首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a q-analogue of Wigner’s 9-j symbols following the notational scheme used by Wilson in identifying the 6-j symbols with Racah polynomials, which eventually led Askey and Wilson to obtain a q-analogue of them, namely, the q-Racah polynomials. Most importantly, we prove the orthogonality of our analogues in complete generality, as well as derive an explicit polynomial expression for these new functions.  相似文献   

2.
In this paper, we define two homogenous q-Laguerre polynomials, by introducing a modified q-differential operator, we prove that an analytic function can be expanded in terms of the q-Laguerre polynomials if and only if the function satisfies certain q-partial differential equations. Using this main result, we derive the generating functions, bilinear generating functions and mixed generating functions for the q-Laguerre polynomials and generalized q-Hahn polynomials. Cigler’s polynomials and its generating functions discussed in [J. Cao, D.-W. Niu, A note on q -difference equations for Cigler’s polynomials, J. Difference Equ. Appl. 22 (2016), 1880–1892.] are generalized. At last, we obtain an q-integral identity involving q-Laguerre polynomials. These applications indicate that the q-partial differential equation is an effective tool in studying q-Laguerre polynomials.  相似文献   

3.
In this paper we study some limit relations involving some q-special functions related with the A1 (root system) tableau of Dunkl-Cherednik operators. Concretely we consider the limits involving the nonsymmetric q-ultraspherical polynomials (q-Rogers polynomials), ultraspherical polynomials (Gegenbauer polynomials), q-Hermite and Hermite polynomials.  相似文献   

4.
We introduce polynomials B n i (x;ω|q), depending on two parameters q and ω, which generalize classical Bernstein polynomials, discrete Bernstein polynomials defined by Sablonnière, as well as q-Bernstein polynomials introduced by Phillips. Basic properties of the new polynomials are given. Also, formulas relating B n i (x;ω|q), big q-Jacobi and q-Hahn (or dual q-Hahn) polynomials are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
Partial divided-difference equations and three-term recurrence relations satisfied by the bivariate Askey–Wilson and the bivariate q-Racah polynomials are computed in this work. By using limiting processes, partial divided (or q)-difference equations and three-term recurrence relations are also provided for each of the following families of orthogonal polynomials: the bivariate continuous dual q-Hahn, the bivariate Al-Salam-Chihara, the bivariate continuous q-Hahn, the bivariate q-Hahn, the bivariate dual q-Hahn, the bivariate q-Krawtchouk, the bivariate q-Meixner, and the bivariate q-Charlier polynomials.  相似文献   

6.
We develop a tree method for multidimensional q-Hahn polynomials. We define them as eigenfunctions of a multidimensional q-difference operator and we use the factorization of this operator as a key tool. Then we define multidimensional q-Racah polynomials as the connection coefficients between different bases of q-Hahn polynomials. We show that our multidimensional q-Racah polynomials may be expressed as product of ordinary one-dimensional q-Racah polynomial by means of a suitable sequence of transplantations of edges of the trees. Our paper is inspired to the classical tree methods in the theory of Clebsch–Gordan coefficients and of hyperspherical coordinates. It is based on previous work of Dunkl, who considered two-dimensional q-Hahn polynomials. It is also related to a recent paper of Gasper and Rahman: we show that their multidimensional q-Racah polynomials correspond to a particular case of our construction.  相似文献   

7.
In 1991 Tratnik derived two systems of multivariable orthogonal Racah polynomials and considered their limit cases. q-Extensions of these systems are derived, yielding systems of multivariable orthogonal q-Racah polynomials, from which systems of multivariable orthogonal q-Hahn, dual q-Hahn, q-Krawtchouk, q-Meixner, and q-Charlier polynomials follow as special or limit cases. Dedicated to Richard Askey on the occasion of his 70th birthday. 2000 Mathematics Subject Classification Primary—33D50; Secondary—33C50 Supported in part by NSERC grant #A6197.  相似文献   

8.
In this paper, we consider the zero distributions of q-shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to q-shift difference polynomials. We also investigate the uniqueness problem of q-shift difference polynomials that share a common value.  相似文献   

9.
We introduce operators of q-fractional integration through inverses of the Askey–Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q→1 the polynomials become polynomials in xy, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey–Wilson operator on an L2 space weighted by the weight function of the Askey–Wilson polynomials.  相似文献   

10.
An explicit structure relation for Askey–Wilson polynomials is given. This involves a divided q-difference operator which is skew symmetric with respect to the Askey–Wilson inner product and which sends polynomials of degree n   to polynomials of degree n+1n+1. By specialization of parameters and by taking limits, similar structure relations, as well as lowering and raising relations, can be obtained for other families in the q-Askey scheme and the Askey scheme. This is explicitly discussed for Jacobi polynomials, continuous q-Jacobi polynomials, continuous q-ultraspherical polynomials, and for big q-Jacobi polynomials. An already known structure relation for this last family can be obtained from the new structure relation by using the three-term recurrence relation and the second order q-difference formula. The results are also put in the framework of a more general theory. Their relationship with earlier work by Zhedanov and Bangerezako is discussed. There is also a connection with the string equation in discrete matrix models and with the Sklyanin algebra.  相似文献   

11.
The aim of this paper was to derive new identities and relations associated with the q‐Bernstein polynomials, q‐Frobenius–Euler polynomials, l‐functions, and q‐Stirling numbers of the second kind. We also give some applications related to theses polynomials and numbers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Starting from the addition formula for q-disk polynomials, which is an identity in noncommuting variables, we establish a basic analogue in commuting variables of the addition and product formula for disk polynomials. These contain, as limiting cases, the addition and product formula for little q-Legendre polynomials. As q tends to 1 the addition and product formula for disk polynomials are recovered. Date received: September 29, 1995. Date revised: May 20, 1996.  相似文献   

13.
For little q-Jacobi polynomials and q-Hahn polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as LU factorizations. We develop a general theory of LU factorizations related to complete systems of orthogonal polynomials with discrete orthogonality relations which admit a dual system of orthogonal polynomials. For the q = 0 orthogonal limit functions we discuss interpretations on p-adic spaces. In the little 0-Jacobi case we also discuss product formulas. Dedicated to Dick Askey on the occasion of his seventieth birthday. 2000 Mathematics Subject Classification Primary—33D45, 33D80 Work done at KdV Institute, Amsterdam and supported by NWO, project number 613.006.573.  相似文献   

14.
The tensor product of a positive and a negative discrete series representation of the quantum algebra Uq(su(1,1)) decomposes as a direct integral over the principal unitary series representations. Discrete terms can appear, and these terms are a finite number of discrete series representations, or one complementary series representation. From the interpretation as overlap coefficients of little q-Jacobi functions and Al-Salam and Chihara polynomials in base q and base q–1, two closely related bilinear summation formulas for the Al-Salam and Chihara polynomials are derived. The formulas involve Askey-Wilson polynomials, continuous dual q-Hahn polynomials and little q-Jacobi functions. The realization of the discrete series as q-difference operators on the spaces of holomorphic and anti-holomorphic functions, leads to a bilinear generating function for a certain type of 21-series, which can be considered as a special case of the dual transmutation kernel for little q-Jacobi functions.  相似文献   

15.
Due to the fact that in the case q > 1 the q-Bernstein polynomials are no longer positive linear operators on C[0, 1], the study of their convergence properties turns out to be essentially more difficult than that for q < 1. In this paper, new saturation theorems related to the convergence of q-Bernstein polynomials in the case q > 1 are proved.  相似文献   

16.
The q-Catalan numbers studied by Carlitz and Riordan are polynomials in q with nonnegative coefficients. They evaluate, at q = 1, to the Catalan numbers: 1, 1, 2, 5, 14,…, a log-convex sequence. We use a combinatorial interpretation of these polynomials to prove a q-log-convexity result. The sequence of q-Catalan numbers is not q-log-convex in the narrow sense used by other authors, so our work suggests a more flexible definition of q-log convex be adopted. Received January 2, 2007  相似文献   

17.
In this paper, we systematically recover the identities for the q-eta numbers ηk and the q-eta polynomials ηk(x), presented by Carlitz [L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948) 987–1000], which we define here via generating series rather than via the difference equations of Carlitz. Following a method developed by Kaneko et al. [M. Kaneko, N. Kurokawa, M. Wakayama, A variation of Euler’s approach to the Riemann zeta function, Kyushu J. Math. 57 (2003) 175–192] for a canonical q-extension of the Riemann zeta function, we investigate a similarly constructed q-extension of the Hurwitz zeta function. The details of this investigation disclose some interesting connections among q-eta polynomials, Carlitz’s q-Bernoulli polynomials -polynomials, and the q-Bernoulli polynomials that emerge from the q-extension of the Hurwitz zeta function discussed here.  相似文献   

18.
In this paper, generalizations of certain q‐integrals are given by the method of q‐difference equation, which involves the Andrews–Askey integral. In addition, some mixed generating functions for generalized Rogers–Szegö polynomials are obtained by the technique of q‐integral. More over, generating functions for generalized Andrews–Askey polynomials are achieved by q‐integral.  相似文献   

19.
We study the explicit factorization of 2 n r-th cyclotomic polynomials over finite field \mathbbFq{\mathbb{F}_q} where q, r are odd with (r, q) = 1. We show that all irreducible factors of 2 n r-th cyclotomic polynomials can be obtained easily from irreducible factors of cyclotomic polynomials of small orders. In particular, we obtain the explicit factorization of 2 n 5-th cyclotomic polynomials over finite fields and construct several classes of irreducible polynomials of degree 2 n–2 with fewer than 5 terms.  相似文献   

20.
Pointwise convergence of q-Bernstein polynomials and their q-derivatives in the case of 0 < q < 1 is discussed. We study quantitative Voronovskaya type results for q-Bernstein polynomials and their q-derivatives. These theorems are given in terms of the modulus of continuity of q-derivative of f which is the main interest of this article. It is also shown that our results hold for continuous functions although those are given for two and three times continuously differentiable functions in classical case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号