首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper initial value problems and nonlinear mixed boundary value problems for the quasilinear parabolic systems below $\[\frac{{\partial {u_k}}}{{\partial t}} - \sum\limits_{i,j = 1}^n {a_{ij}^{(k)}} (x,t)\frac{{{\partial ^2}{u_k}}}{{\partial {x_i}\partial {x_j}}} = {f_k}(x,t,u,{u_x}),k = 1, \cdots ,N\]$ are discussed.The boundary value conditions are $\[{u_k}{|_{\partial \Omega }} = {g_k}(x,t),k = 1, \cdots ,s,\]$ $\[\sum\limits_{i = 1}^n {b_i^{(k)}} (x,t)\frac{{\partial {u_k}}}{{\partial {x_i}}}{|_{\partial \Omega }} = {h_k}(x,t,u),k = s + 1, \cdots N.\]$ Under some "basically natural" assumptions it is shown by means of the Schauder type estimates of the linear parabolic equations and the embedding inequalities in Nikol'skii spaces,these problems have solutions in the spaces $\[{H^{2 + \alpha ,1 + \frac{\alpha }{2}}}(0 < \alpha < 1)\]$.For the boundary value problem with $\[b_i^{(k)}(x,t) = \sum\limits_{j = 1}^n {a_{ij}^{(k)}} (x,t)\cos (n,{x_j})\]$ uniqueness theorem is proved.  相似文献   

2.
The inequalities $$P_{k,l} = \frac{1}{{B(l + 1,k)}}\int\limits_0^{l/(k + l)} {x^l (1 - x)^{k - 1} dx = I_{l/(k + l)} (l + 1,k)< \frac{1}{2}}$$ and $$\Phi _{k,l,\mu } = \frac{1}{{B(k,k\mu + 1)}}\int\limits_0^1 {x^{k - 1} (1 - x)^{k\mu } I_x (l + 1,l\mu )dx< \frac{1}{2}}$$ are shown to be valid for any positive real numbersk, l, μ.  相似文献   

3.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

4.

Let $ k \in {\shadN} $ , $ w(x) = (1+x^2)^{1/2} $ , $ V^{\prime} _k = w^{k+1} {\cal D}^{\prime} _{L^1} = \{{ \,f \in {\cal S}^{\prime}{:}\; w^{-k-1}f \in {\cal D}^{\prime} _{L^1}}\} $ . For $ f \in V^{\prime} _k $ , let $ C_{\eta ,k\,}f = C_0(\xi \,f) + z^k C_0(\eta \,f/t^k)$ where $ \xi \in {\cal D} $ , $ 0 \leq \xi (x) \leq 1 $ $ \xi (x) = 1 $ in a neighborhood of the origin, $ \eta = 1 - \xi $ , and $ C_0g(z) = \langle g, \fraca {1}{(2i \pi (\cdot - z))} \rangle $ for $ g \in V^{\,\prime} _0 $ , z = x + iy , y p 0 . Using a decomposition of C 0 in terms of Poisson operators, we prove that $ C_{\eta ,k,y} {:}\; f \,\mapsto\, C_{\eta ,k\,}f(\cdot + iy) $ , y p 0 , is a continuous mapping from $ V^{\,\prime} _k $ into $ w^{k+2} {\cal D}_{L^1}$ , where $ {\cal D}_{L^1} = \{ \varphi \in C^\infty {:}\; D^\alpha \varphi \in L^1\ \forall \alpha \in {\shadN} \} $ . Also, it is shown that for $ f \in V^{\,\prime} _k $ , $ C_{\eta ,k\,}f $ admits the following boundary values in the topology of $ V^{\,\prime} _{k+1} : C^+_{\eta ,k\,}f = \lim _{y \to 0+} C_{\eta ,k\,}f(\cdot + iy) = (1/2) (\,f + i S_{\eta ,k\,}f\,); C^-_{\eta ,k\,}f = \lim _{y \to 0-} C_{\eta ,k\,} f(\cdot + iy)= (1/2) (-f + i S_{\eta ,k\,}f ) $ , where $ S_{\eta ,k} $ is the Hilbert transform of index k introduced in a previous article by the first named author. Additional results are established for distributions in subspaces $ G^{\,\prime} _{\eta ,k} = \{ \,f \in V^{\,\prime} _k {:}S_{\eta ,k\,}f \in V^{\,\prime} _k \} $ , $ k \in {\shadN} $ . Algebraic properties are given too, for products of operators C + , C m , S , for suitable indices and topologies.  相似文献   

5.
Let Ω be a bounded domain in the n-dimensional Euclidean space. In the cylindrical domain QT=Ω x [0, T] we consider a hyperbolic-parabolic equation of the form (1) $$Lu = k(x,t)u_{tt} + \sum\nolimits_{i = 1}^n {a_i u_{tx_i } - } \sum\nolimits_{i,j = 1}^n {\tfrac{\partial }{{\partial x_i }}} (a_{ij} (x,t)u_{x_j } ) + \sum\nolimits_{i = 1}^n {t_i u_{x_i } + au_t + cu = f(x,t),} $$ where \(k(x,t) \geqslant 0,a_{ij} = a_{ji} ,\nu |\xi |^2 \leqslant a_{ij} \xi _i \xi _j \leqslant u|\xi |^2 ,\forall \xi \in R^n ,\nu > 0\) . The classical and the “modified” mixed boundary-value problems for Eq. (1) are studied. Under certain conditions on the coefficients of the equation it is proved that these problems have unique solution in the Sobolev spaces W 2 1 (QT) and W 2 2 (QT).  相似文献   

6.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

7.
This note is a study of approximation of classes of functions and asymptotic simultaneous approximation of functions by theM n -operators of Meyer-König and Zeller which are defined by $$(M_n f)(x) = (1 - x)^{n + 1} \sum\limits_{k = 0}^\infty {f\left( {\frac{k}{{n + k}}} \right)} \left( \begin{array}{l} n + k \\ k \\ \end{array} \right)x^k , n = 1,2,....$$ Among other results it is proved that for 0<α≤1 $$\mathop {\lim }\limits_{n \to \infty } n^{\alpha /2} \mathop {\sup }\limits_{f \in Lip_1 \alpha } \left| {(M_n f)(x) - f(x)} \right| = \frac{{\Gamma \left( {\frac{{\alpha + 1}}{2}} \right)}}{{\pi ^{1/2} }}\left\{ {2x(1 - x)^2 } \right\}^{\alpha /2} $$ and if for a functionf, the derivativeD m+2 f exist at a pointx∈(0, 1), then $$\mathop {\lim }\limits_{n \to \infty } 2n[D^m (M_n f) - D^m f] = \Omega f,$$ where Ω is the linear differential operator given by $$\Omega = x(1 - x)^2 D^{m + 2} + m(3x - 1)(x - 1)D^{m + 1} + m(m - 1)(3x - 2)D^m + m(m - 1)(m - 2)D^{m - 1} .$$   相似文献   

8.
In this paper, we study blow-up solutions to the Cauchy problem of the inhomogeneous nonlinear Schrödinger equation $ \partial_t u = i ( f(x) \Delta u + \nabla f(x) \cdot \nabla u +k(x)|u|^2u) $ on ${\mathbb{R}}^2In this paper, we study blow-up solutions to the Cauchy problem of the inhomogeneous nonlinear Schr?dinger equation
on . We present existence and non-existence results and investigate qualitative properties of the solutions when they exist. Mathematics Subject Classification (2000) 35Q55, 35G25 Dedicated respectfully to Professor Weiyue Ding on the occasion of his sixtieth birthday.  相似文献   

9.
The trigonometric polynomials of Fejér and Young are defined by $S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}}$S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}} and $C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}$C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}, respectively. We prove that the inequality $\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}}$\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}} holds for all n ≥ 2 and x ∈ (0, π). The lower bound is sharp.  相似文献   

10.
The paper proposes an iterative solution method for discrete-time, nonlinear, two-point boundary-value problems (TPBVP) of the form: $$\begin{gathered} x(k) - x(k - 1) = f(k, x(k - 1), p(k)), \hfill \\ p(k) - p(k - 1) = g(k, x(k - 1), p(k)), \hfill \\ \end{gathered} $$ subject to $$h(x(0), p(0)) = 0,e(x(N), p(N)) = 0.$$ It is a counterpart of a method recently proposed by the authors for similar continuous-time TPBVPs with ordinary differential equations. The method, based on invariant imbedding and a generalized Riccati transformation, reduces the TPBVP to a pair of approximate initial-value problems with ordinary difference equations. Numerical tests are run on two examples originating in optimal control problems.  相似文献   

11.
12.
13.
Denote byf(k) the least natural numberm for which 1+mk is squarefree.Erdös gave the estimatef(k)?k 3/2(logk)?1. We derive (by elementary means) the asymptotic relation $$\sum\limits_{k \leqslant x} {(f(k))^\alpha = c(\alpha )x + 0(x} ) (x \to \infty ,0 \leqslant \alpha \leqslant 1)$$   相似文献   

14.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

15.
Any solution of the system $$f\left( x \right) = \frac{1}{k} \sum\limits_{i = 0}^{k - 1} { f (\frac{{x + i}}{k}) (k = 1, 2, 3, \ldots ) } $$ of functional equations which is continuous on (0,1) is of the form f(x)=a·cot(πx)+b. The result contains a new characterization of the cotangent function by means of simple properties. The proof is elementary.  相似文献   

16.
Existence of positive solutions for the nonlinear fractional differential equation D αu = f(x,u), 0 < α < 1 has been given (S. Zhang. J. Math. Anal. Appl. 252 (2000), 804–812) where D α denotes Riemann–Liouville fractional derivative. In the present work we extend this analysis for n-term non autonomous fractional differential equations. We investigate existence of positive solutions for the following initial value problem
with initial conditions where is the standard Riemann–Liouville fractional derivative. Further the conditions on a j ’s and f, under which the solution is (i) unique and (ii) unique and positive as well, are given  相似文献   

17.
A system of nonlinear Schrödinger equations $\begin{gathered} \frac{{\partial u_k }}{{\partial t}} = ia_k \Delta u_k + f_k (u,u^* ), t > 0, k = 1,...,m, \hfill \\ u_k (0,x) = u_{k0} (x), k = 1,...,m, x \in R^n . \hfill \\ \end{gathered} $ is investigated. Conditions that assure the globality of a solution are found.  相似文献   

18.
On simultaneous approximation by lagrange interpolating polynomials   总被引:1,自引:0,他引:1  
This paper considers to replace △_m(x)=(1-x~2)~2(1/2)/n +1/n~2 in the following result for simultaneousLagrange interpolating approximation with (1-x~2)~2(1/2)/n: Let f∈C_(-1.1)~0 and r=[(q+2)/2],then|f~(k)(x)-P_~(k)(f,x)|=O(1)△_(n)~(a-k)(x)ω(f~(a),△(x))(‖L_n-‖+‖L_n‖),0≤k≤q,where P_n( f ,x)is the Lagrange interpolating polynomial of degree n+ 2r-1 of f on the nodes X_nU Y_n(see the definition of the text), and thus give a problem raised in [XiZh] a complete answer.  相似文献   

19.
A class of nonlinear second-order equations of divergent form is distinguished, whose solutions have properties recalling the properties of solutions of ordinary elliptic equations. In the linear case these are equations of the form $$\sum\nolimits_{j = 1}^k \lambda _j (x)A_j^2 u + \sum\nolimits_{j = 1}^k {\mu _j (x)A_j u + c(x)u + f(x) = 0,} $$ where the \(A_j = \sum\nolimits_{\alpha = 1}^n {\alpha _j^\alpha (x)\frac{\partial }{{\partial x^\alpha }}(1 \leqslant j \leqslant k)} \) are linearly independent first-order differential operators whose Lie algebra is of rank n, 2 ? k ? n, and theλj(x) ? 0 are functions which can become0 zero or increase in a definite way. Harnack's inequality is proved for nonnegative solutions of these equations.  相似文献   

20.
Summary Total Least Squares (TLS) is an estimation method for the solutiona of the linear system when both data sets and are subject to error. The TLS-method minimizes the functional with weighting parameter . In this paper the TLS-functional is analyzed by the technique of Lagrangian multipliers. The main part of the work deals with the case when the estimatea is restricted by an inequality of the formD ab0, D a diagonal matrix. It is shown that there exists a unique estimatea if the weighting parameter is chosen sufficiently large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号