共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Kadish KM Wang LL Thuriere A Giribabu L Garcia R Van Caemelbecke E Bear JL 《Inorganic chemistry》2003,42(25):8309-8319
Three Ru2(5+) diruthenium complexes, (4,0) Ru2(2-CH3ap)4Cl, (3,1) Ru2(2-Fap)4Cl, and (3,1) Ru2(2,4,6-F3ap)4Cl where ap is the 2-anilinopyridinate anion, were examined as to their electrochemical and spectroelectrochemical properties in five different nonaqueous solvents (CH2Cl2, THF, PhCN, DMF, and DMSO). Each compound undergoes a single one-electron metal-centered oxidation in THF, DMF, and DMSO and two one-electron metal-centered oxidations in CH2Cl2 and PhCN. The three diruthenium complexes also undergo two reductions in each solvent except for CH2Cl2, and these electrode processes are assigned as Ru2(5+/4+) and Ru2(4+/3+). Each neutral, singly reduced, and singly oxidized species was characterized by UV-vis thin-layer spectroelectrochemistry, and the data are discussed in terms of the most probable electronic configuration of the compound in solution. The three neutral complexes contain three unpaired electrons as indicated by magnetic susceptibility measurements using the Evans method (3.91-3.95 muB), and the electronic configuration is assigned as sigma2pi4delta2pi(*2)delta, independent of the solvent. The three singly oxidized compounds have two unpaired electrons in CD2Cl2, DMSO-d6, or CD3CN (2.65-3.03 muB), and the electronic configuration is here assigned as sigma2pi4delta2pi(*2). The singly reduced compound also has two unpaired electrons (2.70-2.80 muB) in all three solvents, consistent with the electronic configuration sigma2pi4delta2pi(*2)delta(*2) or sigma2pi4delta2pi(*3)delta*. Finally, the overall effect of solvent on the number of observed redox processes is discussed in terms of solvent binding, and several formation constants were calculated. 相似文献
4.
Johansson EM Hedlund M Odelius M Siegbahn H Rensmo H 《The Journal of chemical physics》2007,126(24):244303
The frontier electronic structures of Ru(tcterpy)(NCS)3 [black dye (BD)] and Ru(dcbpy)2(NCS)(2) (N719) have been investigated by photoelectron spectroscopy (PES), X-ray absorption spectroscopy (XAS) and resonant photoelectron spectroscopy (RPES). N1s XAS has been used to probe the nitrogen contribution in the unoccupied density of states, and PES, together with RPES over the N1s edge, has been used to delineate the character of the occupied density of states. The experimental findings of the frontier electron structure are compared to calculations of the partial density of states for the nitrogens in the different ligands (NCS and terpyridine/bipyridine) and for Ru4d. The result indicates large similarities between the two complexes. Specifically, the valence level spectra show two well separated structures at low binding energy. The experimental results indicate that the outermost structure in the valence region largely has a Ru4d character but with a substantial character also from the NCS ligand. Interestingly, the second lowest structure also has a significant Ru4d character mixed into the structure otherwise dominated by NCS. Comparing the two complexes the BD valence structures lowest in binding energy contains a large contribution from the NCS ligands but almost no contribution from the terpyridine ligands, while for N719 also some contribution from the bipyridine ligands is mixed into the energy levels. 相似文献
5.
The BrO(3)F(2)(-) anion has been prepared by reaction of BrO(3)F with the fluoride ion donors KF, RbF, CsF, [N(CH(3))(4)][F], and NOF. The BrO(3)F(2)(-) anion is only the fourth Br(VII) species to have been isolated in macroscopic quantities, and it is one of only three oxide fluorides that possess D(3)(h)() symmetry, the others being XeO(3)F(2) and OsO(3)F(2). The fluoride ion acceptor properties of BrO(3)F contrast with those of ClO(3)F, which does not react with the strong fluoride ion donor [N(CH(3))(4)][F] to form the analogous ClO(3)F(2)(-) salt. The single-crystal X-ray structures of [NO](2)[BrO(3)F(2)][F] and [N(CH(3))(4)][BrO(3)F(2)] confirm the D(3)(h)() symmetry of the BrO(3)F(2)(-) anion and provide accurate Br-O (1.593(3)-1.610(6) A) and Br-F (1.849(5)-1.827(4) A) bond lengths. The salt, [NO](2)[BrO(3)F(2)][F], is fully ordered, crystallizing in the monoclinic space group, C2/c, with a = 9.892(3) A, b = 12.862(4) A, c = 10.141(4) A, beta = 90.75(2) degrees , V = 12460(7) A(3), Z = 4, and R(1) = 0.0671 at -173 degrees C, whereas [N(CH(3))(4))][BrO(3)F(2)] exhibits a 2-fold disorder of the anion, crystallizing in the tetragonal space group, P4/nmm, with a = 8.5718(7) A, c = 5.8117(6) A, V = 427.02(7) A(3), Z = 2, and R(1) = 0.0314 at -173 degrees C. The (19)F chemical shift of [N(CH(3))(4))][BrO(3)F(2)] in CH(3)CN is 237.0 ppm and is more deshielded than those of the previously investigated Br(VII) species, BrO(3)F and BrF(6)(+). The vibrational frequencies of the BrO(3)F(2)(-) anion were determined by use of Raman and infrared spectroscopy and were assigned with the aid of electronic structure calculations and by analogy with the vibrational assignments reported for XeO(3)F(2) and OsO(3)F(2). The internal and symmetry force constants of BrO(3)F(2)(-) were determined by use of general valence force field and B-matrix methods, respectively, and are compared with those of XeO(3)F(2), OsO(3)F(2), and the unknown ClO(3)F(2)(-) anion. The instability of ClO(3)F(2)(-) relative to BrO(3)F(2)(-) has been investigated by electronic structure calculations and rationalized in terms of atomic charges, Mayer bond orders, and Mayer valencies, and the enthalpies of fluoride ion attachment to BrO(3)F and ClO(3)F. 相似文献
6.
Z. A. Kerzina M. I. Rybinskaya F. M. Dolgushin A. I. Yanovsky P. V. Petrovskii E. Kolehmainen 《Russian Chemical Bulletin》1998,47(3):490-495
The reaction of Ru3(CO)12 with tetramethyltrifluoromethylcyclopentadiene at various ratios of the reagents was studied. Refluxing of Ru3(CO)12 with a sixfold excess of tetramethyltrifluoromethylcyclopentadiene in octane in an inert atmosphere gave a complex, which
is, according to X-ray diffraction data, a dimer,trans-[Ru(η5-C5Me4CF3)(CO)2]2. The reaction under the same conditions but starting from Ru3(CO)12 and C5Me4CF3H in 2∶1 molar ratio gave a hexaruthenium cluster [Ru6(μ3-H)(η2-μ4-CO)2(μ-CO)(Co)12(η5-C5Me4CF2)], which was characterized by IR as well as1H,13C, and19F NMR spectroscopy. According to X-ray diffraction data, an Ru4 tetrahedron, in which two edges are bound by additional “briding” Ru atoms, constitutes the frame of this compound. This
complex has one (η5-C5Me4CF3) ligand, as well as one (μ3-H) and two (η2-μ4-CO) groups.
Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 507–512, March, 1998. 相似文献
7.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution. 相似文献
8.
Setifi F Ouahab L Golhen S Hernandez O Miyazaki A Enoki T Toita T Yamada J Nishikawa H Łapiński A Swietlik R 《Inorganic chemistry》2002,41(14):3761-3768
The preparation, crystal structures, and optical and magnetic properties of two new charge-transfer salts kappa-(EDDH-TTP)(3)[Cr(phen)(NCS)(4)] x 2CH(2)Cl(2) (1) and kappa(21)-(BDH-TTP)(5)[Cr(phen)(NCS)(4)](2) x 2CH(2)Cl(2) (2), where phen = 1,10- phenanthroline, EDDH-TTP = 2-(4,5-ethylenedithio-1,3-dithiol-2-ylidene)-5-(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, and BDH-TTP = 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, are reported. Crystal data: (1) monoclinic P2(1)/a, a = 25.0752(5) A, b = 10.6732(3) A, c = 28.1601(6) A, beta = 95.195(2) degrees, Z = 4, R = 0.0585 for 6741 independent reflections with I > 3 sigma(I); (2) monoclinic P2(1)/a, a = 23.8275(4) A, b = 9.1015 (2) A, c = 27.0420(1) A, beta = 99.9297(8) degrees, Z = 4, R = 0.0530 for 4565 independent reflections with I > 2 sigma(I). The crystal structures for both compounds consist of alternating organic and inorganic layers. The organic layer in compound 1 is characterized as kappa-type, while the organic layer in 2 resembles the kappa-type but it contains orthogonal dimers and monomers, and it is therefore called kappa(21). Compound 1 shows metallic behavior down to low temperature. Salt 2 shows semiconductive behavior, which is explained as the result of either charge ordering owing to the kappa(21)-type structure or Peierls distortion due to the one-dimensional electronic nature. However, weak metallic behavior could be observed at 10 kbar above ca. 150 K and at 15 kbar above 170 K. The magnetic susceptibilities for both compounds show Curie-Weiss behavior, showing that the exchange interactions between the magnetic anions are weak. Polarized reflectance spectra of single crystals were measured over the spectral range from 650 to 7000 cm(-1). Moreover, absorption and diffusion reflectance spectra of powdered crystals dispersed in KBr (from 400 to 7000 cm(-1)) were recorded. Vibrational and electronic features are discussed. 相似文献
9.
The reactions of 2,4,6-trifluorophenylboronic acid with aryl(iodo)palladium(ii) complexes, trans-Pd(C(6)F(5))I(PR(3))(2)(PR(3)= PEt(3), PMe(2)Ph, PMePh(2)) in the presence of Ag(2)O afforded trans-Pd(C(6)F(5))(2,4,6-C(6)F(3)H(2))(PR(3))(2) which are stabilized by fluorine atoms in the ortho positions. 相似文献
10.
Kadish KM Phan TD Giribabu L Shao J Wang LL Thuriere A Van Caemelbecke E Bear JL 《Inorganic chemistry》2004,43(3):1012-1020
Eleven different Ru(2)(4+) and Ru(2)(3+) derivatives are characterized by thin-layer FTIR and UV-visible spectroelectrochemistry under a CO atmosphere. These compounds, which were in-situ electrogenerated from substituted anilinopyridine complexes with a Ru(2)(5+) core, are represented as Ru(2)(L)(4)Cl where L = 2-CH(3)ap, ap, 2-Fap, 2,3-F(2)ap, 2,4-F(2)ap, 2,5-F(2)ap, 3,4-F(2)ap, 3,5-F(2)ap, 2,4,6-F(3)ap, or F(5)ap. The Ru(2)(5+) complexes do not axially bind CO while mono- and bis-CO axial adducts are formed for the Ru(2)(4+) and Ru(2)(3+) derivatives, respectively. Six of the eleven investigated compounds exist in a (4,0) isomeric form while five adopt a (3,1) geometric conformation. These two series of compounds thus provide a large enough number of derivatives to examine trends and differences in the spectroscopic data of the two types of isomers in their lower Ru(2)(4+) and Ru(2)(3+) oxidation states. UV-visible spectra of the Ru(2)(4+) derivatives and IR spectra of the Ru(2)(3+) complexes under CO are both isomer dependent, thus suggesting that these data can be used to reliably predict the isomeric form, i.e., (3,1) or (4,0), of diruthenium complexes containing four unsymmetrical substituted anilinopyridinate bridging ligands; this was confirmed by X-ray crystallographic data for seven compounds whose structures were available. 相似文献
11.
Blum AS Ren T Parish DA Trammell SA Moore MH Kushmerick JG Xu GL Deschamps JR Pollack SK Shashidhar R 《Journal of the American Chemical Society》2005,127(28):10010-10011
Reported in this contribution are the synthesis, characterization, and charge transport properties of wire-like Ru2(ap)4(OPEn), where ap is 2-anilinopyridinate and OPE is -(CCC6H4)nSCH2CH2SiMe3 with n = 1 (1) and 2 (2). Scanning tunneling microscopy (STM) measurements of compound 2 inserted into a SAM of C11 thiol reveal that molecule 2 exhibits (i) the stochastic switching characteristic of wire molecules embedded in insulating SAMs and (ii) higher conductivity than the C11 thiol SAM. More importantly, analysis of the molecular electronic decay constant (beta) exhibits a decrease of at least 15% as compared to purely organic molecular analogues. Hence, the transport characteristics of molecules can be significantly improved for nanoscale electronics through the incorporation of a Ru2 fragment into conjugated backbone. 相似文献
12.
Christe KO Boatz JA Gerken M Haiges R Schneider S Schroer T Tham FS Vij A Vij V Wagner RI Wilson WW 《Inorganic chemistry》2002,41(16):4275-4285
SO(2) solutions of azide anions are bright yellow, and their Raman spectra indicate the presence of covalently bound azide. Removal of the solvent at -64 degrees C from CsN(3) or N(CH(3))(4)N(3) solutions produces yellow (SO(2))(2)N(3)(-) salts. Above -64 degrees C, these salts lose 1 mol of SO(2), resulting in white SO(2)N(3)(-) salts that are marginally stable at room temperature and thermally decompose to the corresponding azides and SO(2). These anions were characterized by vibrational and (14)N NMR spectroscopy and theoretical calculations. Slow loss of the solvent by diffusion through the walls of a sealed Teflon tube containing a sample of CsSO(2)N(3) in SO(2) resulted in white and yellowish single crystals that were identified by X-ray diffraction as CsSO(2)N(3).CsSO(3)N(3) with a = 9.542(2) A, b = 6.2189(14) A, c = 10.342(2) A, and beta = 114.958(4) degrees in the monoclinic space group P2(1)/m, Z = 2, and Cs(2)S(2)O(5).Cs(2)S(2)O(7).SO(2), respectively. Pure CsSO(3)N(3) was also prepared and characterized by vibrational spectroscopy. The S-N bond in SO(2)N(3)(-) is much weaker than that in SO(3)N(3)(-), resulting in decreased thermal stability, an increase in the S-N bond distance by 0.23 A, and an increased tendency to undergo rotational disorder. This marked difference is due to SO(3) being a much stronger Lewis acid (pF(-) value of 7.83) than SO(2) (pF(-) value of 3.99), thus forming a stronger S-N bond with the Lewis base N(3)(-). The geometry of the free gaseous SO(2)N(3)(-) anion was calculated at the RHF, MP2, B3LYP, and CCSD(T) levels. The results show that only the correlated methods correctly reproduce the experimentally observed orientation of the SO(2) group. 相似文献
13.
Boatz JA Christe KO Dixon DA Fir BA Gerken M Gnann RZ Mercier HP Schrobilgen GJ 《Inorganic chemistry》2003,42(17):5282-5292
The combination of CH(3)CN solutions of [N(CH(3))(4)][F] and a mixture of cis- and trans-[N(CH(3))(4)][IO(2)F(4)] produces the novel trans-IO(2)F(5)(2)(-) anion. Under the given conditions, only the trans-IO(2)F(4)(-) anion acts as a fluoride ion acceptor, thus allowing the separation of isomerically pure, soluble cis-IO(2)F(4)(-) from insoluble trans-IO(2)F(5)(2)(-). The trans-IO(2)F(5)(2)(-) and cis-IO(2)F(4)(-) anions were characterized by infrared and Raman spectroscopy and theoretical calculations at the LDFT and HF levels of theory. The trans-IO(2)F(5)(2)(-) anion has a pentagonal-bipyramidal geometry with the two oxygen atoms occupying the axial positions. It represents the first example of a heptacoordinated main group AO(2)X(5) species and completes the series of pentagonal-bipyramidal iodine fluoride and oxide fluoride species. The geometries of the pentagonal-bipyramidal series IO(2)F(5)(2)(-), IOF(5)(2)(-), IF(5)(2)(-), IOF(6)(-), IF(6)(-), and IF(7) and the corresponding octahedral series IO(2)F(4)(-), IOF(4)(-), IF(4)(-), IOF(5), IF(5), and IF(6)(+) were calculated by identical methods. It is shown how the ionic charge, the oxidation state of the iodine atom, the coordination number, and the replacement of fluorine ligands by either an oxygen ligand or a free valence electron pair influence the stuctures and bonding of these species. 相似文献
14.
The neutral complex [Ru(2)(acac)(4)(bptz)] (I) has been prepared by the reaction of Ru(acac)(2)(CH(3)CN)(2) with bptz (bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) in acetone. The diruthenium(II,II) complex (I) is green and exhibits an intense metal-ligand charge-transfer band at 700 nm. Complex I is diamagnetic and has been characterized by NMR, optical spectroscopy, IR, and single-crystal X-ray diffraction. Crystal structure data for I are as follows: triclinic, P1, a = 11.709(2) A, b = 13.487(3) A, c = 15.151(3) A, alpha = 65.701(14) degrees, beta = 70.610(14) degrees, gamma = 75.50(2) degrees, V = 2038.8(6) A(3), Z = 2, R = 0.0610, for 4397 reflections with F(o) > 4sigmaF(o). Complex I shows reversible Ru(2)(II,II)-Ru(2)(II,III) and Ru(2)(II,III)-Ru(2)(III,III) couples at 0.17 and 0.97 V, respectively; the 800 mV separation indicates considerable stabilization of the mixed-valence species (K(com) > 10(13)). The diruthenium(II,III) complex, [Ru(2)(acac)(4)(bptz)](PF(6)) (II) is prepared quantitatively by one-electron oxidation of I with cerium(IV) ammonium nitrate in methanol followed by precipitation with NH(4)PF(6). Complex II is blue and shows an intense MLCT band at 575 nm and a weak band at 1220 nm in CHCl(3), which is assigned as the intervalence CT band. The mixed valence complex is paramagnetic, and an isotropic EPR signal at g = 2.17 is observed at 77 and 4 K. The solvent independence and narrowness of the 1200 nm band show that complex II is a Robin and Day class III mixed-valence complex. 相似文献
15.
Johansson EM Hedlund M Siegbahn H Rensmo H 《The journal of physical chemistry. B》2005,109(47):22256-22263
The element specificity of photoelectron spectroscopy (PES) has been used to compare the electronic and molecular structure of the dyes Ru(tcterpy)(NCS)3 (BD) and Ru(dcbpy)2(NCS)2 adsorbed from solution onto nanostructured TiO2. Ru(dcbpy)2(NCS)2 was investigated in its acid (N3) and in its 2-fold deprotonated form (N719) having tetrabutylammonium (TBA+) as counterions. A comparison of the O1s spectra for the dyes indicates that the interactions through the carboxylate groups with the TiO2 surface are very similar for the dyes. However, we observe that some of the dye molecules also interact through the NCS groups when adsorbed at the TiO2 surface. Comparing the N719 and the N3 molecule, the fraction of NCS groups interacting through the sulfur atoms is smaller for N719 than for N3. We also note that the counterion TBA+ is coadsorbed with the N719 and BD molecules although the amount was smaller than expected from the molecular formulas. Comparing the valence levels for the dyes adsorbed on TiO2, the position of the highest occupied electronic energy level is similar for N3 and N719, while that for BD is lower by 0.25 eV relative to that of the other complexes. 相似文献
16.
Syntheses, structural determination, and electrochemistry of Ru(2)(Fap)(4)Cl and Ru(2)(Fap)(4)(NO)Cl
Bear JL Wellhoff J Royal G Van Caemelbecke E Eapen S Kadish KM 《Inorganic chemistry》2001,40(10):2282-2286
Ru(2)(Fap)(4)Cl and Ru(2)(Fap)(4)(NO)Cl, where Fap is the 2-(2-fluoroanilino)pyridinate anion, were synthesized, and their structural, electrochemical, and spectroscopic properties were characterized. Ru(2)(Fap)(4)Cl, which was obtained by reaction between Ru(2)(O(2)CCH(3))(4)Cl and molten HFap, crystallizes in the monoclinic space group P2(1)/c, with a = 11.2365(4) A, b = 19.9298(8) A, c = 19.0368(7) A, beta = 90.905(1) degrees, and Z = 4. The presence of three unpaired electrons on the Ru(2)(5+) core and the 2.2862(3) A Ru-Ru bond length for Ru(2)(Fap)(4)Cl are consistent with the electronic configuration (sigma)(2)(pi)(4)(delta)(2)(pi*)(2)(delta*)(1). The reaction between Ru(2)(Fap)(4)Cl and NO gas yields Ru(2)(Fap)(4)(NO)Cl, which crystallizes in the orthorhombic space group Pbca, with a = 10.0468(6) A, b = 18.8091(10) A, c = 41.7615(23) A, and Z = 8. The Ru-Ru bond length of Ru(2)(Fap)(4)(NO)Cl is 2.4203(8) A, while its N-O bond length and Ru-N-O bond angle are 1.164(8) A and 155.8(6) degrees, respectively. Ru(2)(Fap)(4)(NO)Cl can be formulated as a formal Ru(2)(II,II)(NO(+)) complex with a linear Ru-N-O group, and the proposed electronic configuration for this compound is (sigma)(2)(pi)(4)(delta)(2)(pi*)(3)(delta*)(1). The binding of NO to Ru(2)(Fap)(4)Cl leads to some structural changes of the Ru(2)(Fap)(4) framework and a stabilization of the lower oxidation states of the diruthenium unit. Also, IR spectroelectrochemical studies of Ru(2)(Fap)(4)(NO)Cl show that NO remains bound to the complex upon reduction and that the first reduction involves the addition of an electron on the diruthenium core and not on the NO axial ligand. 相似文献
17.
18.
Bear JL Chen WZ Han B Huang S Wang LL Thuriere A Van Caemelbecke E Kadish KM Ren T 《Inorganic chemistry》2003,42(20):6230-6240
The products of the reaction between CN(-) and four different diruthenium complexes of the type Ru(2)(L)(4)Cl where L = 2-CH(3)ap (2-(2-methylanilino)pyridinate anion), ap (2-anilinopyridinate anion), 2-Fap (2-(2-fluoroanilino)pyridinate anion), or 2,4,6-F(3)ap (2-(2,4,6-trifluoroanilino)pyridinate anion) are reported. Mono- and/or dicyano adducts of the type Ru(2)(L)(4)(CN) and Ru(2)(L)(4)(CN)(2) are found exclusively as reaction products when either the 2-CH(3)ap or the ap derivative is reacted with CN(-), but diruthenium complexes with formulations of the type Ru(2)(F(x)ap)(3)[mu-(o-NC)F(x-1)ap](mu-CN) or Ru(2)(F(x)ap)(4)(mu-CN)(2) (x = 1 or 3) are also generated when Ru(2)(Fap)(4)Cl or Ru(2)(F(3)ap)(4)Cl is reacted with CN(-). More specifically, four products formulated as Ru(2)(Fap)(4)(CN), Ru(2)(Fap)(4)(CN)(2), Ru(2)(Fap)(3)[mu-(o-NC)ap](mu-CN), and Ru(2)(Fap)(4)(mu-CN)(2) can be isolated from a reaction of CN(-) with the Fap derivative, but the exact type and yield of these compounds depend on the temperature at which the experiment is carried out. In the case of the F(3)ap derivative, the only diruthenium complex isolated from the reaction mixture has the formulation Ru(2)(F(3)ap)(3)[mu-(o-NC)F(2)ap](mu-CN) and this compound has structural, electrochemical, and spectroscopic properties quite similar to that of previously characterized Ru(2)(F(5)ap)[mu-(o-NC)F(4)ap](mu-CN). Both the mono- and dicyano derivatives synthesized in this study possess the isomer type of their parent chloro complexes. The Ru-Ru bond lengths of Ru(2)(ap)(4)(CN) and Ru(2)(2-CH(3)ap)(4)(CN) are longer than those of Ru(2)(ap)(4)Cl and Ru(2)(CH(3)ap)(4)Cl, respectively, and this is accounted for by the strong sigma-donor properties of the CN(-) ligand as compared to Cl(-). The Ru-C bonds in Ru(2)(ap)(4)(CN)(2) are significantly shorter than those in Ru(2)(ap)(4)(CN), thus revealing a greatly enhanced Ru-CN interaction in the dicyano adduct, a result which is also indicated by the fact that nu(CN) in Ru(2)(ap)(4)(CN)(2) is 50 cm(-1) higher than nu(CN) in Ru(2)(ap)(4)(CN). Although both (4,0) Ru(2)(ap)(4)(CN)(2) and (3,1) Ru(2)(Fap)(4)(CN)(2) possess the same formulation, there are clear structural differences between the two complexes and this can be explained by the fact that the two cyano derivatives possess a different binding symmetry of the bridging ligands. Each mono- and dicyano adduct was electrochemically investigated in CH(2)Cl(2) containing TBAP as supporting electrolyte. Ru(2)(ap)(4)(CN), Ru(2)(CH(3)ap)(4)(CN), and Ru(2)(Fap)(4)(CN) undergo one reduction and two oxidations. The two dicyano adducts of the ap and Fap derivatives are characterized by two reductions and one oxidation. The potentials of these processes are all negatively shifted in potential by 400-720 mV with respect to half-wave potentials for the same redox couples of the monocyano derivatives, with the exact value depending upon the specific redox reaction. 相似文献
19.
The face-sharing bioctahedral molybdenum(VI) oxide fluoride anion [Mo2O6F3]3- has been isolated in the new compound [Cu(3-apy)4]3(Mo2O6F3)2 (3-apy = 3-aminopyridine) and has been characterized by experimental and computational techniques. Single-crystal X-ray diffraction studies show that the structure of the [Mo2O6F3]3- anion resembles two distorted face-sharing octahedra, each with three short terminal metal-ligand bonds and three long metal-ligand-metal bridging interactions. Aspects of the electronic structure, as well as geometric comparisons of the bond lengths and angles in [Mo2O6F3]3- with those in the similarly distorted [MoO3F3]3- anion, suggest that the six terminal ligand positions of the confacial bioctahedra are occupied exclusively by oxide ligands and that the three bridging sites are occupied by fluorides. Crystal data for [Cu(3-apy)4]3(Mo2O6F3)2: trigonal space group R3 (No. 148) with hexagonal axes of a = 13.881(1) A and c = 31.783(3) A (Z = 3). 相似文献
20.
合成了双膦醋酸钌合作物,不同温度的^1H NMR谱表明,两个醋酸根分别以单齿和双齿配体与中心钌(Ⅱ)配位;^31P NMR和X-射线结构分析表明膦配体为面式构型。配合物对丙烯酸和苯乙烯有选择氢化活性。 相似文献