首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Photodynamic therapy (PDT) is a potentially immunogenic and FDA‐approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage‐associated molecular patterns and tumor‐specific antigens. Subsequently, the T‐lymphocyte (T cell)–mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T‐cell repertoire with tumor‐reactive activated T cells, diversifying their tumor‐specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T‐cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.  相似文献   

2.
以烟草花叶病毒的赖氨酸突变体(TMV-EPMK)为半抗原载体,利用“点击化学”反应,将半抗原小分子雌三醇(E3)经由两个不同亲/疏水性的连接臂修饰在TMV-EPMK上,成功制备了TMV-EPMK/E3完全抗原。 通过免疫实验发现,以亲水性连接臂制备的TMV-EPMK/E3偶联体可在小鼠体内诱导更高水平的E3特异性免疫反应,所产生的IgG抗体的滴度达21800。 该结果表明,以烟草花叶病毒为载体制备的完全抗原,其免疫原性受连接臂性质的影响,亲水性的连接臂更有利于抗体反应的发生。  相似文献   

3.
Interleukine-2 (IL-2) is a growth factor for antigen-stimulated T lymphocytes and is responsible for T-cell clonal expansion after antigen recognition. It has been demonstrated that DNA vaccine-elicited immune responses in mice could be augmented substantially by using either an IL-2 protein or a plasmid expressing IL-2. Twenty mice, divided into four experimental groups, were immunized with: (1) sham plasmid; (2) HIV-1 DNA vaccine alone; (3) HIV-1 DNA vaccine and IL-2 protein; or (4) HIV-1 DNA vaccine and IL-2 plasmid, separately. All the groups were immunized 3 times at a 2-week interval. Fourteen days after the last DNA vaccine injection, recombinant MVA was injected into all the mice except those in group 1. ELISA and ELISPOT were employed to investigate the effect of IL-2 on DNA vaccine immune responses. The obtained results strongly indicate that the efficacy of HIV vaccine can be enhanced by co-administration of a plasmid encoding IL-2.  相似文献   

4.
Characterization of hepatitis B virus capsids by resistive-pulse sensing   总被引:1,自引:0,他引:1  
We report characterization of hepatitis B virus (HBV) capsids by resistive-pulse sensing through single track-etched conical nanopores formed in poly(ethylene terephthalate) membranes. The pores were ~40 nm in diameter at the tip, and the pore surface was covalently modified with triethylene glycol to reduce surface charge density, minimize adsorption of the virus capsids, and suppress electroosmotic flow in the pore. The HBV capsids were assembled in vitro from Cp149, the assembly domain of HBV capsid protein. Assembled T = 3 (90 Cp149 dimer) and T = 4 (120 dimer) capsids are 31 and 36 nm in diameter, respectively, and were easily discriminated by monitoring the change in current as capsids passed through an electrically biased pore. The ratio of the number of T = 3 to T = 4 capsids transiting a pore did not reflect actual concentrations, but favored transport of smaller T = 3 capsids. These results combined with longer transit times for the T = 4 capsids indicated that the capsids must overcome an entropic barrier to enter a pore.  相似文献   

5.
mRNA vaccines have proven to be more stable, effective, and specific than protein/peptide‐based vaccines in stimulating both humoral and cellular immune response. However, mRNA's fast degradation rate and low‐transfection efficiency in vivo impede its potential in vaccination. Recent research in gene delivery has focused on nonviral vaccine carriers and either implantable or injectable delivery systems to improve transgene expression in vivo. Here, an injectable chitosan‐alginate gel scaffold for the local delivery of mRNA vaccines is reported. Gel scaffold biodegradation rates and biocompatibility are quantified. Scaffold‐mediated mRNA in vivo transgene expression as well as ovalbumin antigen specific cellular and humoral immune responses are evaluated in vivo. Luciferase reporter protein expression resulting from mRNA lipoplex‐loaded gel scaffolds is five times higher than systemic injection. Compared to systemic injections of naked mRNA or mRNA:lipoplexes, elevated levels of T cell proliferation and IFN‐γ secretion are seen with in vivo scaffold‐mediated mRNA lipoplex delivery. Furthermore, a humoral response (ovalbumin antigen specific IgG levels) is observed as early as week 1 for scaffold‐mediated mRNA lipoplex delivery, while protein‐based immunization did not elicit IgG production until 2 weeks post‐injection. Results suggest that injectable scaffold mRNA vaccine delivery maybe a viable alternative to traditional nucleic acid immunization methods.  相似文献   

6.
The Zika virus infections have reached epidemic proportions in the Latin American countries causing severe birth defects and neurological disorders. While several organizations have begun research into design of prophylactic vaccines and therapeutic drugs, computer assisted methods with adequate data resources can be expected to assist in these measures to reduce lead times through bioinformatics approaches. Using 60 sequences of the Zika virus envelope protein available in the GenBank database, our analysis with numerical characterization techniques and several web based bioinformatics servers identified four peptide stretches on the Zika virus envelope protein that are well conserved and surface exposed and are predicted to have reasonable epitope binding efficiency. These peptides can be expected to form the basis for a nascent peptide vaccine which, enhanced by incorporation of suitable adjuvants, can elicit immune response against the Zika virus infections.  相似文献   

7.
Recent experiments demonstrated that atherosclerosis is a Th1 dominant autoimmune condition, whereas Th2 cells are rarely detected within the atherosclerotic lesions. Several studies have indicated that Th2 type cytokines could be effective in the reduction and stabilization of atherosclerotic plaque. Therefore, the modulation of the adaptive immune response by shifting immune responses toward Th2 cells by a novel vaccine could represent a promising approach to prevent from progression and thromboembolic events in coronary artery disease. In the present study, an in silico approach was applied to design a novel multi-epitope vaccine to elicit a desirable immune response against atherosclerosis. Six novel IL-4 inducing epitopes were selected from HSP60 and calreticulin proteins. To enhance epitope presentation, IL-4 inducing epitopes were linked together by AAY and HEYGAEALERAG linkers. In addition, helper epitopes selected from Tetanus toxin fragment C (TTFrC) were applied to induce CD4+ helper T lymphocytes (HTLs) responses. Moreover, cholera toxin B (CTB) was employed as an adjuvant. A multi-epitope construct was designed based on predicted epitopes which was 320 residues in length. Then, the physico-chemical properties, secondary and tertiary structures, stability, intrinsic protein disorder, solubility and allergenicity of this chimeric protein were analyzed using bioinformatics tools and servers. Based on bioinformatics analysis, a soluble, and non-allergic protein with 35.405 kDa molecular weight was designed. Expasy ProtParam classified this chimeric protein as a stable protein. In addition, predicted epitopes in the chimeric vaccine indicated strong potential to induce B-cell mediated immune response and shift immune responses toward protective Th2 immune response. Various in silico analyses indicate that this vaccine is a qualified candidate for improvement of atherosclerosis by inducing immune responses toward T helper 2.  相似文献   

8.
Exposure to ultraviolet B (UV-B) light is recognized to induce suppression of certain immune responses, particularly delayed hypersensitivity. However, its effect on cytotoxic T lymphocyte (CTL) activity, of major importance in the resistance to viruses and tumours, has not been assessed to the same extent. In this study five normal subjects, seropositive for herpes simplex virus (HSV), underwent a standard course of broadband UV-B therapy, as used in the treatment of psoriasis. They received whole-body irradiation thrice weekly for four weeks with incremental doses dependent on skin type. Blood samples were taken immediately before, at two time points during, and at the end of the therapy. An HSV-specific CTL assay was performed using autologous B cells transformed with Epstein-Barr virus as targets. No consistent modulation in CTL activity was obtained as a result of the therapy. The CTLs were separated into CD4 and CD8 subsets by positive selection and, again, no effect of irradiation on CTL activity within each of these two populations was observed. In contrast, the natural killer (NK) cell activity, assessed by the lysis of K562 cells, was significantly reduced at the first time point after the initiation of the phototherapy in all five subjects, and it continued to decline as the treatment progressed. Thus a differential effect of UV-B exposure on cytotoxic activity has been demonstrated: the HSV-specific CTL response is unchanged, while the NK response is suppressed.  相似文献   

9.
Lin F  Butcher EC 《Lab on a chip》2006,6(11):1462-1469
This paper describes the use of a simple microfluidic device for studying T cell chemotaxis. The microfluidic device is fabricated in poly(dimethylsiloxane) (PDMS) using soft-lithography and consists of a "Y" type fluidic channel. Solutions are infused into the device by syringe pumps and generate a concentration gradient in the channel by diffusion. We show that the experimentally measured gradient profiles agree nicely with theoretical predictions and the gradient is stable in the observation region for cell migration. Using this device, we demonstrate robust chemotaxis of human T cells in response to single and competing gradients of chemokine CCL19 and CXCL12. Because of the simplicity of the device, it can flexibly control gradient generation in space and time, and would allow generation of multiple gradient conditions in a single chip for highly parallel chemotaxis experimentation. Visualization of T cell chemotaxis has previously been limited to studies in 3D matrices or under agarose assays, which do not allow precise control or variation in conditions. Acknowledging the importance of lymphocyte homing in the adaptive immune response, the ability to study T cell chemotaxis in microfluidic devices offers a new approach for investigating lymphocyte migration and chemotaxis in vitro.  相似文献   

10.
Extracorporeal photochemotherapy (photopheresis), an immunomodulatory therapy that targets circulating T helper lymphocytes, has been applied to the management of human immunodeficiency virus (HIV) disease. Any therapy that exerts its actions on CD4+ T cells has the potential of exacerbating HIV infection. Therefore, it was necessary to observe immune function during treatment. Because cytotoxic T lymphocytes (CTL) and natural killer cells are thought to play an important role in the response against HIV infection, we examined the effect of photopheresis on HIV cytolytic activity. The study group consisted of seven patients with late-stage HIV disease who had not received any previous treatment for HIV infection. Patients were treated exclusively with photopheresis on two consecutive days each month for 14–32 months (average, 25 months). Peripheral lymphocytes, collected at various points during treatment, were used as effectors in a Wr release assay. Epstein-Barr virus (EBV)-transformed autologous B cell lines transfected with recombinant vaccinia vectors that expressed the HIV env (gp120, gp41) and gag (p24) proteins were used as target cells. All seven patients demonstrated relatively constant levels of cytolysis (>10% above controls) during treatment in the context of stable CD4+ T cell counts and a stable clinical status. These results suggest that extracorporeal photochemotherapy did not impair the cytolytic response to HIV infection and may have enhanced it in some patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号