首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The effects of photodynamic therapy (PDT) on normal brain tissue and depth of brain necrosis were evaluated in rats receiving 2.5 mg/kg aluminum phthalocyanine tetrasulfonate. Twenty-four hours later brains were irradiated with 675 nm light at a power density of 50 mW/cm2 and energy doses ranging from 1.6 to 121.5 J/cm2. Brains were removed 24 h after PDT and evaluated microscopically. When present, brain lesions consisted of well-demarcated areas of coagulation necrosis. When plotting the depth of necrosis against the natural log of energy dose, the data fit a piecewise linear model, with a changepoint at 54.6 J/cm2 and an x intercept of 7.85 J/cm2. The slopes before and after the changepoint were 2.04 and 0.21 mm/In J cm-2, respectively. The x intercept suggests a minimum light dose below which necrosis of normal brain will not occur, whereas the changepoint indicates the energy density corresponding to an approximate maximum depth of necrosis.  相似文献   

2.
Abstract Balb/c mice bearing a transplanted MS-2 fibrosarcoma were injected with 2.5 mg kg 1 of either tetra(4-sulfonatophenyl/porphine (TPPS) in phosphate-buffered saline or 0.5 mg kg−1 of Zn2+-phthalocyanine (Zn-Pc) incorporated into unilamellar liposomes of dipalmitoyl-phosphatidylcholine. Chromatographic studies showed that TPPS is mainly transported in the serum by globulins and albumin, while Zn-Pc is specifically bound by lipoproteins. Exposure of the injected mice to red light (300 J cm−2) caused extensive tumor necrosis. The ultrastructural analysis of tumor specimens taken from mice at 15 h after PDT showed that TPPS photoinduces a preferential necrosis of the neoplastic cells, while Zn-Pc causes severe photodamage to both the vascular system and the neoplastic cells. The different modes of tumor photosensitization by TPPS and Zn-Pc are discussed on the basis of the transport mechanism of the two dyes.  相似文献   

3.
Abstract— The photochemical interaction between 8-methoxypsoralen (8-MOP) and the melanin precursorL–3,4-dihydroxyphenylalanine(dopaH2) has been studied using laser flash photolysis. Triplet excited 8-MOP was thus found to abstract electrons from dopaH2 ( k ∼ 2 × 109 dm3 mol-1 s-1) to form semireduced 8-MOP and semioxidised dopaH2.The technique of pulse radiolysis was used to establish separately the spectra of (a) the semi-reduced form of 8-MOP at pH 6.5 and (b) the semioxidised forms of dopaH2 at pH 6.5, 5.8, 4.6 and 3.3. The corresponding λmax and extinction coefficients found were: for 8-MOP at pH 6.5, λmax= 350 nm (= 9050 dm3 mol-1 cm-1); for dopa at pH 6.5, λmax= 305 nm (ε= 12000 dm3 mol-1 cm-1) and for dopaH at pH 3.3, λ= 305 nm (ε= 5900 dm3 mol-1 cm-1).  相似文献   

4.
Abstract— Marmesin was isolated from the medicinal plant, Afraegle paniculata. Its cytotoxicity and mutagenicity in Chinese hamster V79 cells when sensitized to near ultraviolet (NUV) and long wavelength ultraviolet light or black light (BL) were assayed.
Marmesin was extremely cytotoxic in the dark. This cytotoxicity was photoenhanced in NUV and BL; the photoenhanced lethality being higher in NUV than in BL. The LD50 of marmesin under NUV and BL photosensitization were 0.002 μ M and (0.012 μ M ), respectively. In the absence of NUV and BL, marmesin's LD50 was 0.013 μ M . NUV and BL without marmesin were not significantly cytotoxic at the fluence rates of 0.29 W/m2 and 4.2 W/m2, respectively, for up to 20 min. In contrast to the observed high cytotoxicity of marmesin, its mutagenicity at the HGPRT locus (AzGr) was weak. The implication of this result in the high incidence of skin cancer in Nigeria in which A. paniculata is used as a medicinal plant is discussed.  相似文献   

5.
Fluorescence-detected magnetic resonance of triplets in zero magnetic field (FDMR), fluorescence fading (FF) due to triplet-formation, both at 4.2 K, and prompt fluorescence decay kinetics (FDK) at room temperature have been measured for free pheophorbide- a (f-Pheo) and bound (b-Pheo) to a synthetic polypeptide (L-L ys -L-A la -L-A la )n, dissolved in dimethylformamide (DMF). Fluorescence decay kinetics measurements of f-Pheo in DMF yielded 1-5 ns lifetimes, for b-Pheo in DMF a ~ 50 ps decay-component was found emitting at 730–750 nm. Zero-field splitting parameters |D| and |E| of the lowest triplet state T1 were determined from FDMR spectra as (337 and 24) 10-4 cm-1 for f-Pheo and (359 and 25) 10-4 cm-1 for b-Pheo, both in DMF. Decay rate constants of the three spin levels of T1 of b-Pheo ( K x= 1200 50 s-1, k y= 440 25 s-1, k z= 80 5 s-1) and relative steady-state populations (Nx= 28 2%, Ny= 47 2%, Nz= 26 2%) determined from FF curves predict a fluorescence decrease at the D–E and D + E FDMR transitions, whereas experimentally a fluorescence increase is observed. The FDMR sign-inversion results from singlet-singlet energy transfer from b-Pheo monomers to their aggregates, followed by fast intersystem crossing to T1. These results indicate that aggregates are formed by two or more b-Pheo molecules at different positions on the folded polypeptide chain. This situation resembles that in chlorophyll-proteins, containing low-lying traps, resulting from interaction of chromophores with other chromophores and with the protein environment.  相似文献   

6.
Abstract— Longwave ultraviolet radiation(UVA–320–400nm) is known to induce inflammation, pigmentation and tumor production in mammalian skin. The mechanisms by which such radiation induces these biologic phenomena are poorly defined. In an effort to broaden our knowledge in this area, we examined the effect of UVA on DNA biosynthesis in Hartley strain albino guinea pig skin. The animals were irradiated with selected doses of solar simulated UVA, and DNA was assayed by [3H]thymidine incorporation into epidermal DNA by autoradiography. These studies revealed that UVA inhibited DNA synthesis in a dose dependent manner between 40 and 80 J cm-2 at 3 h post-irradiation. This inhibition was followed by a stimulation of synthesis at 5 h and a second inhibition/ stimulation at 8 and 24 h, respectively. Although the mechanism of alteration is undefined, our data suggest that UVA has profound effects on DNA biosynthesis in mammalian epidermis.  相似文献   

7.
Solar cells using polycarbonate membranes, with CdS deposited on them, were made by a very simple way; the CdS-containing membrane separates a Lucite cell into two compartments. On illumination, about 150 mV photovoltage ( V op) and 0.5 μA cm-2 photocurrent ( I sc) could be produced; one side of the membrane acted as photoanode, and the other side as photocathode. By means of coating Victoria Blue B (VBB) onto the membrane before CdS deposition, the maximum V op and I sc of the CdS-deposited membrane could reach 500 mV and 3.0 (μA cm-2, respectively. A mixture of CdS and CdSe deposited membrane has also been tested and found to have both the advantages of high photovoltage (over 400 mV) and good stability after modification. Even more interesting results were also obtained with CdSe pellets in place of the CdS-deposited membrane, in which V op and I sc of the cell were 1.2 V and 6 mA cm-2, respectively. The essential aspect of the system, modelled after the photosynthetic thylakoid membrane, contains an asymmetrical, ultrathin semiconductor crystallite layer separating two aqueous solutions.  相似文献   

8.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

9.
Abstract— The triplet state of crocetin, which is a water soluble carotenoid, has been sensitized by psoralen. The triplet extinction coefficient, εT (73000 dm3 mol-1 cm-1 at 470 nm), the triplet-triplet spectrum and the quantum yield of triplet formation, φT (less than 1%) are reported in aqueous solution.
In order to calculate the extinction coefficient of crocetin it was necessary to obtain εT for psoralen in water (10000dm3 mol-1 cm-1 at 450 nm). This latter value was obtained using the complete conversion technique and is reported with the triplet-triplet spectrum.  相似文献   

10.
Lutetium texaphyrin, PCI-0123, is a pure, water-soluble photosensitizer with a large broad absorption band centered at 732 nm. The compound was tested for photodynamic therapy (PDT) effectiveness in a murine mammary cancer model. The texaphyrin macrocycle as illustrated by magnetic resonance imaging and 14C-radiolabeled texaphyrin studies was shown to be tumor selective; a tumor-to-muscle ratio of 10.55 was seen after 5 h. Lutetium texaphyrin, at a drug dose of 20 μmol/kg with irradiation 5 h postinjection at 150 J/cm2 and 150 mW/cm2, had significant efficacy (P < 0.0001) in treating neoplasms of moderate size (40 ± 14 mm3) and also had significant efficacy ( P < 0.0001) in treating larger neoplasms (147 ± 65 mm3). The PDT efficacy was correlated with the time interval between PCI-0123 administration and light exposure. A 100% cure rate was achieved when photoirradiation took place 3 h postinjection compared to 50% for 5 h using 10 μmol/kg and 150 J/cm2 at 150 mW/cm2. The PDT efficacy was attributable to the selective uptakehetention of the texaphyrin photosensitizer in addition to the depth of light penetration achievable at the 732 nm laser irradiation.  相似文献   

11.
Abstract— Delayed light emission emanating from preilluminated chloroplasts can be perturbed with pulsed DC electric fields (200–4000 V cm-1), The perturbation produces a strong stimulation of chlorophyll luminescence. During the field perturbation the stimulated emission rises to a maximum, typically within 100μs. and then decays. Two kinetic components, R (rapid) and S (slow)†, are distinguished on the basis of their rise and decay times and their field-dependence. The R component increases exponentially at high fields, decays within 100–300μs during the field pulse and collapses with t 1/2= 15 μs at the end of the field pulse. The S component occurs at low fields, exhibits near saturation at 500 V cm-1, decays with t 1/2 about 3 ms during the field pulse, and collapses with t 1/2= 38μs at the end of the field pulse. Studies using inhibitors, ionophores, electron donors and electron acceptors associate the R component with ion transport processes. The relation to electron transport associated with Photosystem II is discussed.  相似文献   

12.
Abstract— The authors performed photodynamic therapy (PDT), avoiding any hyperthermic effects, using a newly developed diode laser and photosensitizer, mono-L-aspar-tyl chlorin e6 (NPe6), of Meth-A fibrosarcoma implanted in mice and achieved tumor therapeutic benefit. The photodynamic light treatment was performed 5 h following the photosensitizer administration. With 5.0 mg/kg NPe6 and light doses of 50, 100, 150 and 200 J/cm2, the tumor cure rates were 20, 50, 70 and 90%, respectively. With 100 J/cm2 laser exposure and NPe6 doses of 1.25, 2.5, 5.0, 7.5 and 10.0 mg/kg, the tumor cure rates were 0, 20, 50, 70 and 90%, respectively. A charge-coupled device (CCD) camera system was employed to measure the NPe6 fluorescence intensity correlating with the residual amount of the photosensitizer at deferent depth from the tumor surface. The ratios of the NPe6 fluorescence intensity at 3 mm from the tumor surface following 50, 100, 150 and 200 J/cm2 laser exposure to no laser exposure were 0.73, 0.36, 0.22 and 0.16, respectively. With samples sectioned at 1 mm depth, after 50 J/cm2 and the same photosensitizer dose (5 mg/kg) this ratio was 0.19. These results suggest that a certain increase in the tumor tissue level of NPe6 and a certain increase of laser light dose reaching deeper layers of tumor caused an increase in percent cure. In addition, the effectiveness of PDT depends on the total laser dose reaching deeper layers of tumors. Furthermore, the effectiveness of PDT tends to correlate with the amount of NPe6 photobleaching by PDT.  相似文献   

13.
Abstract— The Living Skin Equivalent (LSE™) is an organotypic coculture composed of human dermal fibroblasts interspersed in a collagen-containing matrix and overlaid with human keratinocytes forming a stratified epidermis. The LSE has a dry, air-exposed epidermal surface suitable for the application of oils, creams and emulsions. These features suggested its feasibility as an in vitro skin model for studying the protective effects of sunscreens. Using the thiazolyl blue (MTT) conversion assay as a measure of mitochondrial function, the extent of cytotoxicity induced by various doses of UV-R (280–400 nm) or UV-A (320–400 nm) was evaluated in the LSE. The doses of UV radiation that caused 50% reductions in MTT conversion (UV-R50 or UV-A50) in different lots of LSE were 0.053 ± 0.021 J/cm2 (n = 29) and 11.6 ± 4.9 J/cm2 (n = 17) for UV-R and UV-A, respectively. The protective effects of an 8% homosylate standard and of five UV-A sunscreens, topically applied to the LSE, were determined and compared with their reported protection factors in human skin. Morphological changes and the release of proinflammatory mediators (interleukin-1-α, tumor necrosis factor-α and prostaglandin E2) implicated in UV-induced erythema were also demonstrated in the LSE exposed to UV-A or UV-B. The data suggest that the LSE can be used for studying the effects of U V radiation on skin and may have utility for assessing the efficacy of certain sunscreens against UV-B and UV-A.  相似文献   

14.
Abstract The major side effect of photodynamic therapy (PDT) using Photofrin® is enhanced skin sensitivity for sunlight, which persists for 3-8 weeks after injection. Formation of singlet oxygen and radicals is believed to be involved in the basic mechanism of inducing skin damage. Reducing this side effect would make PDT more widely acceptable, particularly for palliative use. Hairless dorsal skin patches of mice, injected with 10 mg kg−1 photofrin intraperitoneally (i.p.) 24 h before illumination, were used to evaluate the effect of increasing light doses. The light was obtained from a halogen lamp and transmitted via a fiber optic to illuminate a field of 2.5 cm2. After establishing a dose-response relationship for single or fractionated light dose illumination of the skin, drugs known to scavenge radicals, quench singlet oxygen or interfere with histamine release were tested for their protective effect. N -acetylcysteine (NAC), a radical scavenger, administered i.p. (1000 and 2000 mg kg−1) 1 h before illumination produced a significant decrease in skin damage at light doses >50 J cm−2 (protection factor of 1.3-1.8). When NAC was administered in a dose of 500 mg kg−1, no protection was observed. Fractionated illumination experiments in combination with multiple injections of NAC (1000 mg kg−1) also failed to show any protection. The addition of Ranitidine®, a histamine blocking agent (25-100 mg kg−1, given prior to illumination, resulted in a limited protection at higher light doses. From this study we conclude that NAC could be of value in amelioration of the photosensitivity in patients treated with PDT.  相似文献   

15.
The possibility of extending photodynamic therapy to the treatment of highly pigmented neoplastic lesions was tested by using Si(IV)-naphthalocyanine (SiNc) as a tumor-localizing agent. Si(IV)-naphthalocyanine displays intense absorbance at 776 nm (ɛ= 5 × 105 M−1 cm−1), where melanin absorption becomes weaker. As an experimental model we selected B16 pigmented melanoma subcutaneously transplanted to C57BL mice. Upon injection of 0.5 or 1 mg kg−1 of liposome-incorporated SiNc, maximal accumulation of the photosensitizer in the tumor was observed at 24 h with recoveries of 0.35 and 0.57 μg g−1, respectively. However, the tumor targeting by SiNc shows essentially no selectivity, since the photosensitizer concentrations in the skin (peritumoral tissue) were very similar to those found in the tumor at all postinjection times examined by us. Irradiation of SiNc-loaded melanoma with 776 nm light from a diode laser at 24 h postinjection induces tumor necrosis and delay of tumor growth. The effect appears to be of purely photochemical nature at dose rates up to 260 mW cm−2; at higher dose rates, thermal effects are likely to become important.  相似文献   

16.
Abstract— –Photophysical properties of [26] porphyrin (26 P) were investigated in chloroform. The quantum yields of fluorescence, of S1→ T1 intersystem crossing and singlet oxygen formation were measured. The purity, stability, the strong absorption in the red (δmax= 783 nm; εmax= 28 000 M 1 cm-1) and the ability of singlet oxygen formation recommend 26 P as potential photosensitizer for tumor therapy.  相似文献   

17.
Photodynamic Therapy of Human Glioma (U87) in the Nude Rat   总被引:3,自引:1,他引:3  
Abstract— We measured the response of normal brain and the human U87 glioma implanted in the brain of rats (n = 65) to photodynamic therapy (PDT) using Photofrin as the sensitizer. Normal brain and U87 tumor implanted within brain of athymic (nude) rats were subjected to PDT (12.5 mg/kg of Photofrin) at increasing optical energy doses (35 J/cm2, 140 J/cm2, 280 J/cm2) of 632 nm light. Photofrin concentration in tumor, brain adjacent to tumor and normal brain were measured in a separate population of rats. Twenty-four hours after PDT, the brains were removed, sectioned, stained with hematoxylin and eosin (H&E), and the volumes of the PDT-induced lesion measured. Photofrin concentration in tumor greatly exceeded that of normal brain and brain adjacent to tumor (>20×). Both normal brain and U87 tumor exhibited superficial tissue damage with PDT at 35 J/cm2. However, both normal and tumor-implanted brain exhibited tissue damage with increasing optical dose. A heterogeneous pattern of pannecrosis along with a uniform volume of pannecrosis was detected in the tumor. In contrast, normal brain exhibited a uniform sharply demarcated volume of necrosis. Our data indicate that the U87 human brain tumor model and the normal brain in the athymic rat are sensitive to PDT and Photofrin with an optical dose-dependent response to treatment.  相似文献   

18.
Abstract— The extinction coefficient εT, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, Δ D 0T, under demonstrably linear conditions where incident excitation energy, E 0, and ground state absorbance, A 0, are both extrapolated to zero. The result, 7220 ± 320 M -1 cm-1 at 530 nm, validates and slightly corrects many measurements relative to benzophenone of triplet extinction coefficients made by the energy transfer technique, and of triplet yields obtained by the comparative method.
As E 0 and A 0 both decrease, Δ D 0T becomes proportional to their product. In this situation, the ratio R = (1/ A 0)(dΔ D 0T/d E 0) = (εT - εGT. Measurements of R , referred to benzophenone, give (εT - εGT for any substance, without necessity for absolute energy calibration.
Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (εT - εG at 470 nm = 7.3 × 104 M -1 cm-1) give φT= 0.83 ± 0.04.  相似文献   

19.
Abstract— Laser flash photolysis studies of DNA-complexed ethidium bromide were undertaken. We have observed a singlet-singlet (S1-Sn) absorption process for DNA-complexed ethidium bromide. The observed lowest singlet excited state lifetime was 21 ± 2 ns. The molar difference extinction coefficient was measured to be 2.4 ± 0.4 × 103M-1 cm-1 at 370 nm. The assignment of this transition was confirmed by time resolved fluorescence measurements.  相似文献   

20.
A computer-operated spectrograph was recently built at Okazaki, Japan. Different specimens can be placed on a horseshoe-shaped focal curve (10 m long) covering a wavelength range of 250 to 1000 nm so they can be irradiated simultaneously. The linear dispersion is about 0.8 nm/cm. The photon fluence rate on the focal curve is 5 x 1015. photons x cm-2 x s-1 at 300nm and 1 x 1016 photons x cm-2 x s-1 at 600 and at 900 nm. The spectral half width is 5.5 nm or less on the focal curve. The stray light content is about 10-5 of the main peak at the peak wavelength ± 100 nm. Specimens are set in microcomputer-controlled threshold boxes so that wavelengths, photon fluence rates, photon fluences and timing of irradiations are controlled automatically according to a pre-programmed schedule. An optical fiber system is also provided for remote irradiations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号