首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The micellization of F127 (E(98)P(67)E(98)) in dilute aqueous solutions of polyethylene glycol (PEG6000 and PEG35000) and poly(vinylpyrrolidone) (PVP K30 and PVP K90) is studied. The average hydrodynamic radius (r(h,app)) obtained from the dynamic light scattering technique increased with increase in PEG concentration but decreased on addition of PVP, results which are consistent with interaction of the micelles with PEG and the formation of micelles clusters, but no such interaction occurs with PVP. Tube inversion was used to determine the onset of gelation. The critical concentration of F127 for gelation increased on addition of PEG and of PVP K30 but decreased on addition of PVP K90. Small-angle X-ray scattering (SAXS) was used to show that the 30 wt% F127 gel structure (fcc) was independent of polymer type and concentration, as was the d-spacing and so the micelle hard-sphere radius. The maximum elastic modulus (G(max)(')) of 30 wt% F127 decreased from its value for water alone as PEG was added, but was little changed by adding PVP. These results are consistent with the packed-micelles in the 30 wt% F127 gel being effectively isolated from the polymer solution on the microscale while, especially for the PEG, being mixed on the macroscale.  相似文献   

2.
对PEO-PPO-PEO(127)三嵌段共聚物的水溶液行为及添加十二烷基硫酸钠(SDS)后对共聚物溶液行为的影响进行了研究.利用荧光探针技术对不同SDS浓度下F127/SDS体系的胶来形成进行研究,并研究了SDS对F127浓溶液凝胶化行为的影响.结果表明:随着SDS浓度的增大,F127稀溶液胶束的形成受到抑制,SDS浓度愈大,形成的胶束结构就愈疏松.对F127浓溶液来说,SDS与F127摩尔比小于2时,体系易于凝胶化;但当SDS浓度增大,其与F127摩尔比大于2时,体系开始难于凝胶化,直至摩尔比大于5时,体系不再形成凝胶.  相似文献   

3.
The gelation of Pluronic F127 aqueous solution was investigated in the presence of sodium poly(γ‐glutamate) (PGA). The gelation temperature was determined based on the tube inversion technique. The gelation temperature increased greatly when the ratio of PGA to F127 was 0.2, and then decreased at higher ratios. The enthalpy of gelation (ΔHgel) was calculated based on the model of Eldridge and Ferry. A splitting in the model was observed when the PGA/F127 ratio was 0.2 which yielded both a maximum and a minimum of ΔHgel. These results indicate that PGA can significantly affect the gelation of F127. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers.  相似文献   

5.
利用电导法研究了烷基三甲基溴化铵表面活性剂(CnTAB,n=12,14,16),即十二烷基三甲基溴化铵(DTAB),十四烷基三甲基溴化铵(TTAB)和十六烷基三甲基溴化铵(CTAB),在混合极性溶剂乙二醇/水(体积分数0~40%)中的胶团化行为。考察了温度对胶团形成的影响,应用相分离模型估算了三个表面活性剂的胶团热力学参数。结果表明临界胶团浓度(cmc)和反离子解离度(α)都随乙二醇组分的增加而增大。在乙二醇/水混合溶剂中胶团形成的标准吉布斯自由能相差很小,混合焓都是负值,而混合熵都为正值,说明焓-熵补偿效应在胶团形成中起主导作用。  相似文献   

6.
Pluronic F127, a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), has generated considerable interest as a drug delivery vehicle due to its ability to gel at physiological temperatures. This work examines the gelation behavior of Pluronic F127 in the presence of a series of hydrophobic pharmaceuticals, to determine whether there is any correlation between gelation and physicochemical parameters of drug solutes. The study includes the local anesthetics dibucaine, lidocaine, and tetracaine; the pharmaceutical additives methyl paraben, ethyl paraben, and propyl paraben; the anti-cancer agents paclitaxel and baccatin III; and the anti-inflammatory agent sulindac. The results indicate that the presence of local anesthetics and pharmaceutical additives allows F127 solutions to form gels at lower copolymer concentrations; local anesthetics and pharmaceutical additives also shift gelation down to a lower gelation temperature. This behavior is strongly dependent on drug solubility; poorly soluble drugs (paclitaxel, baccatin III, sulindac) do not change the lower gelation temperature or minimum F127 concentration for gelation. An equation relating the decrease in gelation temperature to drug solubility is presented, and the equation fits the data well. The results have significant positive implications on the toxicity and economic issues related to use of Pluronic F127 in drug delivery.  相似文献   

7.
Abstract

Diffusion coefficients of different aggregates in aqueous solutions formed by an amphiphilic block copolymer, Pluronic F127 (F127), were determined by cyclic voltammetry, and the critical micelle concentration (CMC, 4.31 × 10?4 mol L?1) of F127 was obtained. The added n‐butanol facilitates the formation of micelles from the monomers of F127 and makes the critical micelle temperature (CMT) of F127 solutions decrease. The diffusion coefficient of the F127 micelles decreases relatively fast at first with increasing n‐butanol and then the decreasing trend slows after the solubilization of n‐butanol in micelles reaches maximum.  相似文献   

8.
Formation and structure transition of the complex composed of triblock copolymer F127 and nonionic surfactant TX-100 have been investigated by 1H NMR spectroscopy, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Three TX-100 concentration regions are identified, within which TX-100/20 mg/mL F127 complex undergoes different temperature-induced structure transitions. In low concentration region (< 9.42 mM), F127 single molecular species (unimers) wrap around TX-100 micelles forming F127/TX-100 complex with TX-100 micelle as the skeleton at a lower temperature (5 degrees C), and the skeleton transfers to F127 micelle at higher temperature (40 degrees C); in intermediate TX-100 concentration region (9.42-94.85 mM), the skeleton of F127/TX-100 complex transfers from TX-100 micelle successively into F127 micelle and TX-100 micelle again upon heating. The interaction of F127 with TX-100 is saturated in high TX-100 concentration region (> 157.57 mM), and free TX-100 micelles coexist with larger clusters of F127/TX-100 complexes. In addition, TX-100-induced F127/TX-100 complex formation and structure transition are also investigated at constant temperatures. The results show that within 5-10 degrees C, F127 unimers mainly adsorb on the surface of TX-100 micelles just like normal water soluble polymers; in the temperature region of 15-25 degrees C, TX-100 micelles prompts F127 micelle formation. Within 30-40 degrees C, TX-100 inserts into F127 micelles leading to the breakdown of F127 aggregates at higher TX-100 concentrations, and the obtained unimers thread through TX-100 micelles forming complex with TX-100 micelle as skeleton.  相似文献   

9.
The effects of a PPO-PEO-PPO triblock copolymer (25R4, PO(19)-EO(33)-PO(19)) on thermoreversible micellization and gelation properties of a PEO-PPO-PEO triblock copolymer (F108, EO(133)-PO(50)-EO(133)) in water were studied by means of micro-DSC and rheology. A complete, mirror-image like thermoreversible behavior has been observed for all of the samples with various molar ratios of 25R4 to F108. At a given concentration of F108, the addition of 25R4 results in the salt-out like effect on the primary micellization of F108; that is, the critical micellization temperature (CMT) of F108 shifts to lower temperatures with increasing the content of 25R4. The enthalpy changes for micellization are a linear function of the 25R4/F108 molar ratio at a fixed F108 concentration. Beyond the primary peak for the micellization of F108, a secondary peak or shoulder is observed in the DSC curves for the samples with the higher 25R4/F108 molar ratios, due to the formation of the hydrophobic aggregates from both the PPO blocks of F108 and those (i.e., PPO blocks) of 25R4. Furthermore, as an example, the dynamic viscoelastic properties of 18 wt % F108 solutions with various contents of 25R4 have been examined. It is found that, when the 25R4/F108 molar ratio < or =1, 25R4 does not affect the gelation of F108 notably. When the ratio is greater than 1, however, the formation of the 25R4-bridged micellar aggregates delays the gelation of F108 significantly. A schematic model has been proposed to explain the mechanism for the 25R4-influenced micellization and gelation of F108.  相似文献   

10.
Poloxamers F88 (EO97PO39EO97) and P85 (EO27PO39EO27) are triblock copolymers of ethylene oxide (EO) and propylene oxide (PO), which have the same hydrophobic PO block. We studied aqueous solutions of these two copolymers by the conjoint use of differential scanning calorimetry (DSC), rheology, and small-angle X-ray scattering (SAXS). The results showed that the temperature-induced micellization of aqueous solutions of F88 and P85 was a progressive process followed by gelation for sufficiently concentrated samples. Gelation was due to the ordered packing of micelles under a hexagonal compact (HC) structure for P85 and a body-centered cubic (BCC) phase for F88. Importantly, the phase diagram of F88/P85 mixtures in water was elucidated and showed the destabilization of the HC phase upon addition of small amounts of F88.  相似文献   

11.
The effect of molecular characteristics of EO-PO triblock copolymers viz. Pluronic(?) P103 (EO(17)PO(60)PEO(17)), P123 (EO(19)PO(69)EO(19)), and F127 (EO(100)PO(65)EO(100)) on micellar behavior and solubilization of a diuretic drug, hydrochlorothiazide (HCT) was investigated. The critical micellization temperatures (CMTs) and size for empty as well as drug loaded micelles are reported. The CMTs and micelle size depended on the hydrophobicity and molecular weight of the copolymer; a decrease in CMT and increase in size was observed on solubilization. The solubilization of the drug hydrochlorothiazide (HCT) in the block copolymer nanoaggregates at different temperatures (28, 37, 45°C), pH (3.7, 5.0, 6.7) and in the presence of added salt (NaCl) was monitored by using UV-vis spectroscopy and solubility data were used to calculate the solubilization characteristics; micelle-water partition coefficient (P) and thermodynamic parameters of solubilization viz. Gibbs free energy (ΔG(s)°), enthalpy (ΔH(s)°) and entropy (ΔS(s)°). The solubility of the drug in copolymer increases with the trend: P103>P123>F127. The solubilized drug decreased the cloud point (CP) of copolymers. Results show that the drug solubility increases in the presence of salt but significantly enhances with the increase in the temperature and at a lower pH in which drug remains in the non-ionized form.  相似文献   

12.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

13.
The temperature-induced structural changes and thermodynamics of ionic microgels based on poly(acrylic acid) (PAA) networks bonded with poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) (Pluronic) copolymers have been studied by small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (USANS), differential scanning calorimetry (DSC), and equilibrium swelling techniques. Aggregation within microgels based on PAA and either the hydrophobic Pluronic L92 (average composition, EO8PO52EO8; PPO content, 80%) or the hydrophilic Pluronic F127 (average composition, EO99PO67EO99; PPO content, 30%) was studied and compared to that in the solutions of the parent Pluronic. The neutron scattering results indicate the formation of micelle-like aggregates within the F127-based microgel particles, while the L92-based microgels formed fractal structures of dense nanoparticles. The microgels exhibit thermodynamically favorable volume phase transitions within certain temperature ranges due to reversible aggregation of the PPO chains, which occurs because of hydrophobic associations. The values of the apparent standard enthalpy of aggregation in the microgel suspensions indicate aggregation of hydrophobic clusters that are more hydrophobic than the un-cross-linked PPO chains in the Pluronic. Differences in the PPO content in Pluronics L92 and F127 result in a higher hydrophobicity of the resulting L92-PAA-EGDMAmicrogels and a larger presence of hydrophobic, densely cross-linked clusters that aggregate into supramolecular structures rather than micelle-like aggregates such as those formed in the F127-PAA-EGDMA microgels.  相似文献   

14.
The high concentration 17 wt% triblock copolymer poly(ethylene oxide)100–poly(propylene oxide)65–poly(ethylene oxide)100 Pluronic F127 aqueous solutions with the addition of laponite is investigated as a novel temperature-sensitive hydrogel system. The critical micelle temperature (cmt) and the sol-to-gel transition were characterized by rheological experiments and differential scanning calorimetry. Experimental results showed that laponite particles have no significant influence on the cmt. On the other hand, viscoelastic measurements have highlighted an increase of the sol-to-gel transition temperature for mixtures with 2 and 3 wt% of laponite particles. This additive can be used to adjust the gelation temperature close to physiological temperature in medical applications.  相似文献   

15.
选择了甲醇、乙醇、正丙醇、乙二醇、乙二胺、乙醇胺及2 甲氧基乙醇等七种包括单官能团和双官能团共溶剂、与水组成混合溶剂,并利用荧光探针技术研究了共溶剂对环氧乙烷 环氧丙烷 环氧乙烷(PEO PPO PEO)共聚物水溶液胶束形成及其结构的影响,结果表明,一些共溶剂与水和共聚物PPO段都具有较好的混溶性,使形成胶束的CMT升高,而其它共溶剂的引入则使得形成胶束的CMT降低.从共溶剂对所形成胶束的微结构影响看,能与共聚物链有较强作用的双官能团的共溶剂和有较小分子尺寸的共溶剂有利于使形成的胶束具有较紧密的结构,在此条件下,形成胶束的紧密程度决定了胶束内微极性的大小,而与引入共溶剂的极性大小关系不大.  相似文献   

16.
用激光散射测量确定C_8-卵磷脂临界胶团浓度及其随温度、盐离子的变化。从中导出了胶团分子量, 形成因子, 能量梯级间隔以及标准焓等反映该溶液内分子相互作用的重要参量, 从而导出单价盐调控胶团大小以至形成和解体的规律和方法。  相似文献   

17.
The living cationic polymerization of several functional monomers in the presence of an added base is investigated as a possible preparation of a new series of water-soluble or stimuli-responsive copolymers. Under appropriate conditions, the polymerization allows the selective preparation of polymers with various shapes and different sequence distributions of monomer units, including stimuli-responsive block copolymers, gradient copolymers, poly(vinyl alcohol) graft copolymers, and star-shaped polymers. The stimuli-induced self-association of the diblock copolymers is also examined. An aqueous solution of the diblock copolymer with a thermo-sensitive segment undergoes rapid physical gelation upon warming to the critical temperature to give a transparent gel, and returns sensitively to the solution state upon cooling. The sharp transition of stimuli-responsive segments with highly controlled primary structure turns out to play an important role in the self-association. Small-angle neutron scattering, dynamic light scattering, and electron microscopy studies reveal that the physical gelation involves a thermosensitive micellization of diblock copolymers (core size: 18-20 nm) and subsequent micelle macrolattice formation (bcc symmetry). Based on the gelation mechanism, several stimuli-responsive gelation systems are achieved using other stimuli such as the addition of a selective solvent or compound, cooling, pH change, and irradiation with ultraviolet light.  相似文献   

18.
邵芳可  吴唯  查刘生  张琰 《化学学报》2008,66(1):138-140
通过一系列反应将三嵌段共聚物Pluronic F127的端羟基转变为氨基。利用氨基化F127大单体,最终成功的将生物活性大分子叶酸接到了F127端基上(F127-Folate) 作为靶向配体。利用1H-NMR对嵌段共聚物的结构进行了表征。用透析法制备胶束溶液,利用TEM研究了F127-Folate在水溶液中的自组装形态,结果表明F127-Folate正在水溶液中自组装形成纳米胶束。  相似文献   

19.
LiCl-induced changes in the micellar hydration and gelation characteristics of aqueous solutions of the two triblock copolymers F127 (EO(100)PO(70)EO(100)) and P123 (EO(20)PO(70)EO(20)) (where EO represents the ethylene oxide block and PO represents the propylene oxide block) have been studied by small-angle neutron scattering (SANS) and viscometry. The effect of LiCl was found to be significantly different from those observed for other alkali metal chloride salts such as NaCl and KCl. This can be explained on the basis of the complexation of hydrated Li(+) ions with the PEO chains in the micellar corona region. The interaction between the chains and the ions is more significant in the case F127 because of its larger PEO block size, and therefore, micelles of this copolymer show an enhanced degree of hydration in the presence of LiCl. The presence of the hydrated Li(+) ions in the micellar corona increases the amount of mechanically trapped water there and compensates more than the water molecules lost through the dehydration of the PEO chains in the presence of the Cl(-) ions. The enhancement in micellar hydration leads to a decrease in the minimum concentration required for the F127 solution to form a room-temperature cubic gel phase from 18% to 14%. Moreover, for both copolymers, the temperature range of stability of the cubic gel phase also increases with increasing LiCl concentration, presumably because of the ability of the Li(+) ions to reduce micellar dehydration with increasing temperature. Viscosity studies on a poly(ethylene glycol) (PEG) homopolymer with a size equivalent to that of the PEO block in F127 (4000 g/mol) also suggest that the dehydrating effect of the Cl(-) ion on the PEG chain is compensated by its interaction with the hydrated Li(+) ions.  相似文献   

20.
结合流变学频率扫描和同步辐射小角X射线散射(SAXS), 研究了17R4(PO14-EO24-PO14)含量和温度对17R4/F127(EO99-PO65-EO99)混合水溶液凝胶结构的影响. 结果表明, 溶胶、 软凝胶和硬凝胶分别对应无序结构、 无序与立方相共存结构以及立方相结构. 对于F127水溶液体系, 可以将F127形成的胶束看作硬球, 随着温度的升高, 胶束的硬球半径和胶束中F127链的聚集数随之减小, 这是因为17R4在较低温度下很难形成胶束, 当温度升高时, 17R4链参与胶束的形成, 从而使胶束数目增加, 因此每个胶束中的F127链数也随之减小. 当17R4含量较高时, 胶束外壳中F127部分的PEO链段数随着温度升高而减小, 胶束外壳变得更软, 因此, 当17R4/F127摩尔比为2: 1时, 混合溶液在高温下呈现面心立方(fcc)到体心立方(bcc)的结构转变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号