首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a bounded domain of the n -dimensional (n?2) space one considers a class of degenerate quasilinear elliptic equations, whose model is the equation $$\sum\limits_{i = 1}^n {\frac{{\partial F}}{{\partial x_i }}} (a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i - 2} u_{x_i } ) = f(x),$$ where x =(x1,..., xr), li?0, mi>1, the function f is summable with some power, the nonnegative continuous function a(u) vanishes at a finite number of points and satisfies \(\frac{{lim}}{{\left| u \right| \to \infty }}a(u) > 0\) . One proves the existence of bounded generalized solutions with a finite integral $$\int\limits_\Omega {\sum\limits_{i = 1}^n {a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i } dx} }$$ of the Dirichlet problem with zero boundary conditions.  相似文献   

2.
Gordon  Yehoram  Junge  Marius 《Positivity》1997,1(1):7-43
We extend classical volume formulas for ellipsoids and zonoids to p-sums of segments $${vol}\left( {\sum\limits_{i=1}^m { \oplus_p } [ -x_i ,x_i ]} \right)^{1/n} \sim_{c_p} n^{ - \frac{1}{{p'}}} \left( {\sum\limits_{card(I) = n} {|\det (x_i)_i |^p}} \right)^{\frac{1}{{pn}}}$$ where x1,...,xm are m vectors in $\mathbb{R}^n ,\frac{1}{p} + \frac{1}{{p\prime }} = 1$ . According to the definition of Firey, the Minkowski p-sum of segments is given by $$\sum\limits_{i = 1}^m { \oplus _p [ - x_{i,} x_i ]} = \left\{ {\sum\limits_{i = 1}^m {\alpha _i } x_i \left| {\left( {\sum\limits_{i = 1}^m {|\alpha _i |^{p^\prime } } } \right)} \right.^{\frac{1}{{p^\prime }}} \leqslant 1} \right\}.$$ We describe related geometric properties of the Lewis maps associated to classical operator norms.  相似文献   

3.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

4.
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ where Δ is the Laplacian in EuclideanN-spaceR N, R+=(0, ∞) and Ω is a bounded domain inR N with a piecewise smooth boundary δΩ.  相似文献   

5.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

6.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

7.
The well-known Bombieri-A. I. Vinogradov theorem states that (1) $$\sum\limits_{q \leqslant x^{\tfrac{1}{2}} (\log x)^{ - s} } {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{y \leqslant x} } \left| {\psi (y,q;a) - \frac{y}{{\varphi (q)}}} \right| \ll \frac{x}{{(\log x)^A }},$$ whereA is an arbitrary positive constant,B=B(A)>0, and as usual, $$\psi (x,q;a) = \sum\limits_{\mathop {n \leqslant x}\limits_{n = a(q)} } {\Lambda (n),}$$ Λ being the Von Mangoldt's function. The problem of finding a result analogous to (1) for short intervals was investigated by many authors. Using Heath-Brown's identity and the approximate functional equation for DirichletL-functions, A. Perelli, J. Pintz and S. Salerno in 1985 established the following extension of Bombieri's theorem: Theorem 1. (2) $$\sum\limits_{q \leqslant Q} {\mathop {\max }\limits_{(a,q) = 1} \mathop {\max }\limits_{h \leqslant y} \mathop {\max }\limits_{\frac{x}{2}< \approx \leqslant x} } \left| {\psi (z + h,q;a) - \psi (z,q;a) - \frac{h}{{\varphi (q)}}} \right| \ll \frac{y}{{(\log x)^A }}$$ where A>0 is an arbitrary constant,y=x θ $$\frac{7}{{12}}< \theta \leqslant 1, Q = x^{\frac{1}{{40}}} .$$ ,Q=x 1/40. By improving the basic lemma which A. Perelli, J. Pintz and S. Salerno used as the main tool to prove Theorem 1, we obtain Theorem 2.Under the same condition as in Theorem 1,for Q=x 1/38.5, (2)still holds.  相似文献   

8.
We consider integral functionals in which the density has growth p i with respect to ${\frac{\partial u}{\partial x_i}}$ , like in $$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$ We show that higher integrability of the boundary datum forces minimizer to be more integrable.  相似文献   

9.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

10.
Пустьf(x) — интегрируемая 2π-периодическая функция, aω(f,δ) иs n(x)=sn(f, x). соответственно, модуль непрерывности иn-ая сумма Фурье этой функции. В настоящей работе, продолжающей исследования Г. Фрейда, Л. Лейндлера—E. M. Никищина, И. Сабадоша и К. И. Осколкова, доказывается следующая теорема.Если Ω(u) — выпуклая или вогнутая непрерывная функция и если (1) 1 $$\left\| {\left. {\sum\limits_{k = 1}^\infty \Omega (|S_k (x) - f(x)|)} \right\|_C } \right.$$ то 1 $$\omega (f;\delta ) = O\left( {\delta \int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} } \right),$$ где ¯Ω(v) —функция, обратная к Ω(и). При этом существует функция f0(х), удовлетворяющая условию (1), для которой $$\omega (f;\delta ) = c\delta \int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} (c > 0).$$ ЕслиΩ(u)— вогнутая функция, то интеграл \(\int\limits_\delta ^1 {\frac{{\bar \Omega (v)}}{{v^2 }}dv} \) можно заменить на \(\int\limits_{\bar \Omega (\delta )}^1 {\frac{{du}}{{\Omega (u)}}.} \) . Отсюда вытекает, что еслиΩ(u) — функция типа модуля непрерывности, то для того, чтобы (1) всегда влекло принадлежность f(x) классу Lip 1, необходимо и достаточно условие \(\int\limits_0^1 {\frac{{du}}{{\Omega (u)}}}< \infty .\)   相似文献   

11.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

12.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

13.
Let f be a complex-valued multiplicative function, letp denote a prime and let π(x) be the number of primes not exceeding x. Further put $$m_p (f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{\pi (x)}}\sum\limits_{p \leqslant x} {f(p + 1)} {\text{, }}M(f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)}$$ and suppose that $$\mathop {\lim \sup }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {\left| {f\left( n \right)} \right|^2 } < \infty ,\sum\limits_{p \leqslant x} {\left| {f\left( n \right)} \right|^2 } \ll x\left( {\ln x} \right)^{ - \varrho } ,$$ with some \varrho > 0. For such functions we prove: If there is a Dirichlet character χ_d such that the mean-value M(f χ_d) exists and is different from zero,then the mean-value m_p(f) exists. If the mean-value M(f) exists, then the same is true for the mean-valuem_p(f) .  相似文献   

14.
In this paper we study the first and tiie third boundary value problems for the elliptic equation \[\begin{array}{l} \varepsilon \left( {\sum\limits_{i,j = 1}^m {{d_{i,j}}(x)\frac{{{\partial ^2}u}}{{\partial {x_i}\partial {x_j}}} + \sum\limits_{i = 1}^m {{d_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + d(x)u} } } \right) + \sum\limits_{i = 1}^m {{a_i}(x)\frac{{\partial u}}{{\partial {x_i}}} + b(x) + c} \ = f(x),x \in G(0 < \varepsilon \le 1), \end{array}\] as the degenerated operator bas singular points, where \[\sum\limits_{i,j = 1}^m {{d_{i,j}}(x){\xi _i}{\xi _j}} \ge {\delta _0}\sum\limits_{i = 1}^m {\xi _i^2} ,({\delta _0} > 0,x \in G).\] The uniformly valid asymptotic solutions of boundary value problems have been obtained under the condition of \[\sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} > 0,or} \sum\limits_{i = 1}^m {{a_i}(x){n_i}(x){|_{\partial G}} < 0} ,\] where \(n = ({n_1}(x),{n_2}(x), \cdots ,{n_m}(x))\) is the interior normal to \({\partial G}\).  相似文献   

15.
The Cauchy problem for the Laplace operator $$\sum\limits_{k = 1}^\infty {\frac{{\left| {\hat f(n_k )} \right|}}{k}} \leqslant const\left\| f \right\|1$$ is modified by replacing the Laplace equation by an asymptotic estimate of the form $$\begin{gathered} \Delta u(x,y) = 0, \hfill \\ u(x,0) = f(x),\frac{{\partial u}}{{\partial y}}(x,0) = g(x) \hfill \\ \end{gathered} $$ with a given majoranth, satisfyingh(+0)=0. Thisasymptotic Cauchy problem only requires that the Laplacian decay to zero at the initial submanifold. It turns out that this problem has a solution for smooth enough Cauchy dataf, g, and this smoothness is strictly controlled byh. This gives a new approach to the study of smooth function spaces and harmonic functions with growth restrictions. As an application, a Levinson-type normality theorem for harmonic functions is proved.  相似文献   

16.
One proves the global unique solvability in class \(W_\infty ^1 (0,T;C^{2,d} (\bar \Omega ) \cap H(\Omega ))\) of the initial-boundary-value problem for the quasilinear system $$\frac{{\partial \vec \upsilon }}{{\partial t}} + \upsilon _k \frac{{\partial \vec \upsilon }}{{\partial x_k }} - \mu _1 \frac{{\partial \Delta \vec \upsilon }}{{\partial t}} - \int\limits_0^t {K(t - \tau )\Delta \vec \upsilon (\tau )d\tau + grad p = \vec f,di\upsilon \bar \upsilon = 0,\upsilon , > 0.}$$ This system described the nonstationary flows of the elastic-viscous Kelvin-Voigt fluids with defining relation $$\left( {1 + \sum\limits_{\ell = 1}^L {\lambda _\ell } \frac{{\partial ^\ell }}{{\partial t^\ell }}} \right)\sigma = 2\left( {v + \sum\limits_{m = 1}^{L + 1} {\user2{\ae }_m } \frac{{\partial ^m }}{{\partial t^m }}} \right)D,L = 0,1,2,...;\lambda _L ,\user2{\ae }_{L + 1} > 0.$$   相似文献   

17.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

18.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

19.
The uniqueness of solutions for Cauchy problem of the form $$\frac{{\partial u}}{{\partial t}} = \Delta A(u) + \sum\limits_{i = 1}^N {\frac{{\partial b^i (u)}}{{\partial x_i }} + c(u)} $$ is studied. It is proved that ifuBVx and A(u) is strictly increasing, the solution is unique.  相似文献   

20.
In this paper, we study the Dirichlet problems for the following quasilinear second order sub-elliptic equation, $$\left\{ {\begin{array}{*{20}c} {\sum\limits_{i,j = 1}^m {X_i^* (A_{i,j} (x,u)X_j u) + \sum\limits_{j = 1}^m {B_j (x,u)X_j u + C(x,u) = 0in\Omega ,} } } \\ {u = \varphi on\partial \Omega ,} \\ \end{array} } \right.$$ whereX={X 1, ...,X m } is a system of real smooth vector fields which satisfies the Hörmander's condition,A i,j ,B j ,CC ( $\bar \Omega$ ×R) and (A i,j (x,z)) is a positive definite matrix. We have proved the existence and the maximal regularity of solutions in the “non-isotropic” Hölder space associated with the system of vector fieldsX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号