首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2 and two diode lasers as pump sources are presented. A single-mode Fabry–Pérot-type tunable diode laser (TDL) and an external-cavity diode laser (ECL) were combined to generate radiation in the mid-infrared region near 7.2 μm. With a TDL at a wavelength of approximately 1290 nm and an ECL emitting between 1504 and 1589 nm it was possible to carry out spectroscopic experiments concerning SO2 at five different phasematching points between 1350 and 1400 cm-1 by fixing the wavelength of one pump laser and tuning the wavelength of the other. With an input power of 8 mW for the single-mode Fabry–Pérot-type diode laser and 6 mW for the external-cavity laser an output power of about 10 nW was generated. Using the tuning capabilities of the external-cavity laser a spectral region up to 5 cm-1 could be covered within one scan. Measurements of SO2 absorption lines at low pressure demonstrate the high-resolution features of the spectrometer. Moreover, these data provide new direct experimental phasematching data for the rarely investigated spectral region at 7.2 μm. Received: 27 October 1997/Revised version: 8 May 1998  相似文献   

2.
A dual‐wavelength monolithic Y‐branch distributed Bragg reflection (DBR) diode laser at 671 nm is presented. The device is realized with deeply etched surface DBR gratings by one‐step epitaxy. A maximum optical output power of 110 mW is obtained in cw‐operation for each laser cavity. The emission wavelengths of the device are 670.5 nm and 671.0 nm with a spectral width of 13 pm (0.3 cm−1) and a mean spectral distance of 0.46 nm (10.2 cm−1) over the whole operating range. Together with a free running power stability of ± 1.1% this most compact diode laser is ideally suited as an excitation light source for portable shifted excitation Raman difference spectroscopy (SERDS).  相似文献   

3.
Flying-spot displays require light sources in the red, green and blue with a high optical output power and nearly diffraction limited beams. In this paper we present experimental results of red-emitting, AlGaInP based, tapered diode lasers and their integration into diode laser modules. The laser modules emit a collimated, almost diffraction limited beam with an optical output power as high as 1W at a wavelength close to 635 nm. The tapered laser chips were designed with emphasis on achieving a good beam quality in vertical and lateral directions of a collimated beam. To test the suitability for flying-spot display applications, we performed fiber coupling experiments with a low mode number optical fiber with an etendue as low as 6 × 10?6 mm2 sr. A maximum transmission of 70% of the launched power behind the uncoated fiber as well as a usable power in excess of 580mW were measured.  相似文献   

4.
High-power distributed-feedback (DFB) lasers for the wavelength range near 940 nm (i.e. about 10,600 cm−1) were used for line-broadening measurements of individual rotational-vibrational absorption lines of water vapour at atmospheric pressure using a minimalist set-up. The laser has a maximum output power larger than 500 mW. Over the whole power range from threshold to maximum power, it operates in single mode operation with a tuning range of 4.7 nm, i.e. 50 cm−1, at 20°C. With an emission line-width ≤2 MHz (0.66×10−4 cm−1), the device is well suited for high-resolution spectroscopy.  相似文献   

5.
We have demonstrated the continuous wave laser operation of Yb3+:YVO4. For Ti:Al2O3 laser pumping at 985 nm, a maximum slope efficiency of 41.1% and a threshold pump power of 76 mW were obtained. The maximum output power was 433 mW at a laser wavelength of 1037 nm.Using a cw diode laser around 974 nm as a pump source, a slope efficiency of 10.9% and a maximum output power of 152 mW were achieved at a laser wavelength of 1039 nm. The laser threshold pump power was 608 mW with respect to the absorbed pump power. The effective emission cross-sections for the 2F5/22F7/2 transition were determined using the Füchtbauer–Ladenburg equation. The maxima of the effective absorption and emission cross-sections were found at 984.5 nm (6.74×10-20 cm2) in -po larization and 985.5 nm (4.28×10-20 cm2) also in -p olarization. The upper laser level lifetime was measured with suppression of radiation trapping and is around 318 s. PACS 42.55.Rz; 42.55.Xi; 42.70.Hj  相似文献   

6.
Diode laser spectroscopy of overtone bands of acetylene   总被引:1,自引:0,他引:1  
Overtone absorption lines of acetylene in the regions around 12700 and 11800 cm–1 have been examined by the use of tunable diode lasers in free-running mode. The diode laser emission wavelength was scanned around the gas resonances by simply sweeping its injection current, permitting a direct observation of the absorption line-shapes. Weak overtone absorption lines have been detected by using the wavelength modulation (WM) spectroscopy with 2nd harmonic detection technique and the collisional broadening and shift coefficients have been obtained. The high resolving power and accuracy of the spectrometer permitted a wavenumber error of less than 0.01 cm–1. The correct interpretation of the absorption signals when detecting the second harmonic in the presence of a sloping background is discussed.  相似文献   

7.
LD抽运Yb:GSO实现1090 nm低阈值激光运转   总被引:1,自引:0,他引:1       下载免费PDF全文
用Yb:Gd2SiO5(Yb:GSO)晶体实现激光运转.利用940 nm的二极管激光器作为抽运源,得到Yb:GSO激光器的激光中心波长为1090 nm,抽运阈值功率密度仅为1.27 kW/cm2,小于Yb:YAG的理论阈值1.53 kW/cm2.利用2%的输出镜得到最大输出功率为360 mW,相应的斜效率为19%. 关键词: Yb:GSO晶体 激光二极管抽运 阈值  相似文献   

8.
Stable continuous wave multi-wavelength operation of a stripe-array diode laser with an externalcavity spectral beam combining geometry is presented. In this setup each emitter of the stripe-array is forced to operate at a different wavelength, which leads to a decoupling between the usually phase-locked emitters. With a reflective diffraction grating with a period of 300 lines per mm, 33 equidistant laser lines around a center wavelength of 978 nm were realized, spanning a spectral range of 26 nm. With this novel approach near-diffraction limited emission with a beam quality of M 2 < 1.2 and an output power of 450 mW was achieved. This laser light source can be used for applications requiring low temporal but high spatial coherence.  相似文献   

9.
Single-mode, long-wavelength vertical-cavity surface-emitting lasers (VCSELs) in the near- to mid-infrared covering the wavelength range from 1.3 to 2.3μm are presented. This wide spectral emission range opens applications in gas sensing and optical interconnects. All these lasers are monolithically grown in the InGaA1As-InP material system utilizing a buried tunnel junction (BTJ) as current aperture. Fabricated with a novel high-speed design with reduced parasitics, bandwidths in excess of 10 GHz at 1.3 and 1.55 μm have been achieved. Therefore, the coarse wavelength division multiplexing (CWDM) wavelength range of 1.3 to 1.6 μm at 10 Gb/s can be accomplished with one technology. Error-free data-transmission at 10 Gb/s over a fiber link of 20 km is demonstrated. One-dimensional arrays have been fabricated with emission wavelengths addressable by current tuning. Micro-electro-mechanical system (MEMS) tunable devices provide an extended tuning range in excess of 50 nm with high spectral purity. All these devices feature continuous-wave (CW) operation with typical single-mode output powers exceeding 1 mW. The operation voltage is around 1 - 1.5 V and power consumption is as low as 10 - 20 mW. Furthermore, we have also developed VCSELs based on GaSb, targeting at the wavelength range from 2.3 to 3.0 μm. The functionality of tunable diode laser spectroscopy (TDLS) systems is shown by presenting a laser hygrometer applying a 1.84-μm VCSEL.  相似文献   

10.
3 (PPLN) crystal pumped by two single-frequency diode lasers. A maximum DFG power of 1.6 μW at 3.6 μm was generated with a pump power of 61.4 mW at 832 nm and a signal power of 41.5 mW at 1083 nm incident on a 19-mm-long PPLN crystal, which corresponds to a conversion efficiency of 335 μW W-2 cm-1. Received: 16 June 1998  相似文献   

11.
We present an investigation of the excited-state absorption and laser emission of a 1.0-at. %-Nd3+-doped YVO4 single-crystal fiber grown by the low-cost and versatile laser-heated pedestal growth technique. Efficient laser emission at 1064 nm was achieved when the fiber was pumped, in an end-pump cavity, by a Ti:sapphire laser at 808 nm. A continuous-wave threshold of 10 mW was observed with an efficiency of 42% with respect to the absorbed pump power and the maximum output power of 200 mW. These results are excellent when compared with those of a commercial bulk crystal adapted to the same cavity (48% efficiency, 250-mW maximum output power). Thus the fibers are characterized as strong candidates for the construction of compact lasers that can also be pumped by low-cost diode lasers.  相似文献   

12.
We report the properties of a compact diode-pumped continuous-wave Nd:GdV04 laser with a linear cavity and different Nd-doped laser crystals. In a 0.2at.% Nd-doped Nd:GdVO4 laser, 1.54 W output laser power is achieved at 912nm wavelength with a slope efficiency of 24.8% at an absorbed pump power of 9.4W. With 0.3at.% Nd-doping concentration, we can obtain the either single-wavelength emission at 1064nm or 912nm or the dual-wavelength emission at 1064nm and 912nm by controlling the incident pump power. From an incident pump power of 11.6 W, the 1064nm emission between ^4Fa/2 and ^4I11/2 is suppressed completely by the 912nm emission between ^4Fa/2 and ^4I9/2. We obtain 670 mW output of the 912nm single-wavelength laser emission with a slope efficiency of 5.5% by taking an incident pump power of 18.4 W. Using a Nd:GdV04 laser with 0.4at.% Nd-doping concentration, we obtain either the single-wavelength emission at 1064nm or the dual-wavelength emission at both 1064nm and 912nm by increasing the incident pump power. We observe a strong competition process in the dualavelength laser.  相似文献   

13.
A tunable diode laser photoacoustic setup based on a recently demonstrated cantilever technique was used for sensitive detection of oxygen. As light sources, we used a distributed feedback (DFB) diode laser and a vertical-cavity surface-emitting (VCSEL) laser, both operating near 760 nm. With the 30 mW DFB laser a noise-equivalent detection limit of 20 ppm for oxygen was obtained, while a detection limit of 5 ‰ was achieved with the VCSEL having an output power of 0.5 mW. Our results yield a noise-equivalent sensitivity of 4.8×10-9 cm-1W Hz-1/2 and demonstrate the potential of this technique for compact and sensitive measurement of oxygen. PACS 42.62.Fi; 42.55.Px; 82.80.Kq  相似文献   

14.
包层泵浦的L波段Er3+/Yb3+共掺光纤激光器   总被引:5,自引:4,他引:1  
报道了一种工作波长在L波段的包层泵浦Er3+/Yb3+共掺光纤环形激光器. 环形腔内的激光工作介质为一段9 m长的Er3+/Yb3+共掺高掺杂光纤. 利用6个976 nm LD同时抽运前段Er3+/Yb3+共掺双包层光纤产生的放大自发辐射谱作二次抽运源, 使腔内增义谱由C波段移到L波段, 实现了L波段光纤激光器的稳定输出; 采用包层泵浦技术, 在抽运功率为3594.5 mW时, 测得泵浦入纤功率为2731.8 mW, 实现了输出连续功率最大518.4 mW,斜率效率达到19% 的激光输出; 所形成激光的工作波长为1613.94 nm, 激光光谱的3 dB带宽为1.5 nm, 边模抑制比接近于50 dB.  相似文献   

15.
High-power operation of diode-pumped fiber lasers at wavelength near 2μm are demonstrated with short length of heavily Tm3 -doped silica glass fibers. With 7-cm long fiber, a laser at near 2 μm is obtained with the threshold of 135 mW, maximum output power of 1.09 W, and slope efficiency of 9.6% with respect to the launched power from a laser diode at 790 nm. The output stability of this fiber laser is within 5%.The dependence of the performance of fiber lasers on the operation temperature and cavity configuration parameters is also investigated.  相似文献   

16.
With a type-I critical phase-matching LBO crystal, an intracavity frequency doubled solid-stated Yb:YAG green laser is reported. Using a plano-concave resonator, with pump power of 1.37 W, 24.5 mW TEM00 continuous wave laser at 525 nm was obtained. The optical conversion efficiency is 1.8%. By adjusting the placed angle of LBO, several lasers wavelength from 525.0 to 537.8 nm could be extracted. The maximum output power at 537.8 nm is 3.1 mW.  相似文献   

17.
To reduce fabrication costs of fibre-optic terminal modules for interactive services, an InGaAsP/InP chip fabrication process has been developed for monolithic integration of a strained-layer multiple quantum well laser, a monitor diode and a photoreceiver with a 1300/1530nm filter. Reception responsivity and output power of the chips are 0.1 AW-1 at 1300nm wavelength and 4.5mW at 1530nm wavelength, respectively. At present, complete modules with fibre pigtail exhibit 0.7mW launch power, but 1.4 mW is expected with the latest chips.  相似文献   

18.
A continuous wave optical parametric oscillator, generating up to 300 mW idler output in the 3–4 μm wavelength region, and pumped by a fiber-amplified DBR diode laser is used for trace gas detection by means of quartz-enhanced photoacoustic spectroscopy (QEPAS). Mode-hop-free tuning of the OPO output over 5.2 cm-1 and continuous spectral coverage exceeding 16.5 cm-1 were achieved via electronic pump source tuning alone. Online monitoring of the idler wavelength, with feedback to the DBR diode laser, provided an automated closed-loop control allowing arbitrary idler wavelength selection within the pump tuning range and locking of the idler wavelength with a stability of 1.7×10-3 cm-1 over at least 30 min. Using this approach, we locked the idler wavelength at an ethane absorption peak and obtained QEPAS data to verify the linear response of the QEPAS signal at different ethane concentrations (100 ppbv-20 ppmv) and different power levels. The detection limit for ethane was determined to be 13 ppbv (20 s averaging), corresponding to a normalized noise equivalent absorption coefficient of 4.4×10-7 cm-1  W/Hz1/2. PACS 42.55.Wd; 42.65.Yj; 42.62.Fi  相似文献   

19.
We report analytical and experimental studies on the characteristics of a high-brightness laser diode endpumped Nd:YVO4/KTP laser. A simple model was developed to optimize the cavity parameters and estimate the green output power of intracavity frequency doubled lasers. Using a 1 W high-brightness laser diode as the pump source, high efficiency operation was realized. The second-harmonic output power at 532 nm was measured to be 286.5 mW at an incident pump power of 881.4 mW, corresponding to an optical to optical efficiency of 32.5%.  相似文献   

20.
We report on master-oscillator power amplification using a broad-area laser diode (BAL) emitting at a wavelength of λ =780 nm. The master oscillator is an injection-locked single-mode diode laser delivering a seeding beam of 35 mW, which is amplified in double pass through the BAL up to 410 mW. After beam shaping and spatial filtering by a single-mode fibre we obtain a clean Gaussian beam with a maximum power of 160 mW. There is no detectable contribution of the BAL eigenmodes in the spectrum of the output light. This laser system is employed for operation of a 87Rb magneto-optical trap (MOT) and for near-resonant absorption imaging in a Bose-Einstein condensation experiment. Received: 10 April 2000 / Revised version: 13 June 2000 / Published online: 2 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号