首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用液相化学还原法制备出多壁碳纳米管(MWCNT)负载的双金属PdNi纳米颗粒(PdNi/MWCNT);采用水热法,在乙醇为溶剂和还原剂的体系中,制备出MWCNT负载的双金属AgCo纳米颗粒(AgCo/MWCNT).碱性溶液中,PdNi/MWCNT对甲醇、乙醇、丙醇和丁醇的氧化具有稳定而强的电催化活性;AgCo/MWCNT对氧还原反应也表现出强的电活性,且对上述高浓度的醇具有较强的耐受力.以PdNi/MWCNT催化剂为阳极,同时将AgCo/MWCNT催化剂制备成气体扩散电极,组装成无离子交换膜的自呼吸式直接醇燃料电池.分别以甲醇、乙醇、丙醇和丁醇为燃料时,这种无膜的燃料电池均能稳定放电,且具有较高的功率密度及较大的输出电压.  相似文献   

2.
Electrospray ionization (ESI) of solutions containing adenine and AgNO(3) yields polymeric [Ad(x)+ Ag(y)-zH]((y-z)+) species. Density functional theory (DFT) calculations have been used to examine potential structures for several of the smaller ions while multistage mass spectrometry experiments have been used to probe their unimolecular reactivity (via collision-induced dissociation (CID)) and bimolecular reactivity (via ion-molecule reactions with the neutral reagents acetonitrile, methanol, butylamine and pyridine). DFT calculations of neutral adenine tautomers and their silver ion adducts provide insights into the binding modes of adenine. We find that the most stable [Ad + Ag](+) ion does not correspond to the most stable neutral adenine tautomer, consistent with previous studies that have shown that transition metal ions can stabilize rare tautomeric forms of nucleobases. Both the charge and the stoichiometry of the [Ad(x)+ Ag(y)-zH]((y-z)+) complexes play pivotal roles in directing the types of fragmentation and ion-molecule reactions observed. Thus, [Ad(2)+ Ag(2)](2+) is observed to dissociate to [Ad + Ag](+) and to react with butylamine via proton transfer, while [Ad(2)+ Ag(2)- H](+) fragments via loss of neutral adenine to form the [Ad + Ag(2)- H](+) ion and does not undergo proton transfer to butylamine. DFT calculations on several isomeric [Ad(2)+ Ag(2)](2+) ions suggest that planar centrosymmetric cations, in which two adjacent silver atoms are bridged by two N7H adenine tautomers via N(3),N(9)-bidentate interactions, are the most stable. The [Ad + Ag(2)-H](+) ion adds two neutral reagents in ion-molecule reactions, consistent with the presence of two vacant coordination sites. It undergoes a silver atom loss to form the [Ad + Ag - H](+) radical cation, which in turn fragments quite differently to the even electron [Ad + Ag](+) ion. Several other pairs of radical cation/even electron adenine-silver complexes were also found to undergo different fragmentation reactions.  相似文献   

3.
Near thermal energy reactive collisions of small mixed metal cluster cations Ag(m)Au(n) (+) (m+n=4, 5, and 6) with carbon monoxide have been studied in the room temperature Penning trap of a Fourier transform ion-cyclotron-resonance mass spectrometer as a function of cluster size and composition. The tetrameric species AgAu(3) (+) and Ag(2)Au(2) (+) are found to react dissociatively by way of Au or Ag atom loss, respectively, to form the cluster carbonyl AgAu(2)CO(+). In contrast, measurements on a selection of pentamers and hexamers show that CO is added with absolute rate constants that decrease with increasing silver content. Experimentally determined absolute rate constants for CO adsorption were analyzed using the radiative association kinetics model to obtain cluster cation-CO binding energies ranging from 0.77 to 1.09 eV. High-level ab initio density functional theory (DFT) computations identifying the lowest-energy cluster isomers and the respective CO adsorption energies are in good agreement with the experimental findings clearly showing that CO binds in a "head-on" fashion to a gold atom in the mixed clusters. DFT exploration of reaction pathways in the case of Ag(2)Au(2) (+) suggests that exoergicities are high enough to access the minimum energy products for all reactive clusters probed.  相似文献   

4.
Standard rate constants (ks)ms and cathodic transfer coefficients (αc)ms of the electrode reaction of Cr(III)CyDTA/Cr(II)CyDTA have been obtained by the coulostatic method in methanol + water, ethanol + water, n-propanol + water and n-butanol + water mixtures, where CyDTA means trans-1,2-cyclohexanediaminetetraacetate. The values of (ks)ms obtained at low concentrations of the alcohols are nearly equal to that obtained in aqueous solutions. With increasing concentrations of alcohols, they decrease, in the cases of methanol and n-butanol, in the concentration ranges in which the measurements were made, while, in the cases of ethanol and n-propanol, they decrease to reach minima at certain concentrations and then increase again. The values of (αc)ms obtained at high concentrations of n-propanol and n-butanol are much larger than those obtained in aqueous solutions.  相似文献   

5.
Oxidative coupling of alcohols (methanol and ethanol) and dimethylamine on atomic‐oxygen‐activated Au(111) occurs entirely on the surface to form the corresponding amides when the alkoxy of the alcohol and the amide derived from the amine are co‐adsorbed. For effective oxygen‐assisted coupling the formation of the amide requires excess methanol. Mechanistic studies reveal that molecularly adsorbed methanol removes excess adsorbed atomic oxygen efficiently, precluding either secondary oxidation or oxidative dehydrogenation of dimethylamide to the imine. The adsorbed amide then can react with the aldehyde produced by β‐hydride elimination from the alkoxy to form the hemiaminal, the reactive intermediate leading to coupling. The selectivity for formamide production can be increased to nearly 100 % in excess methanol.  相似文献   

6.
In this study the theoretical Gaussian-2 K(+)/Na(+) binding affinities (enthalpies) at 0 K (in kJ mol(-1)) for six amides in the order: formamide (109.2/138.5) < N-methylformamide (117.7/148.6) < acetamide (118.7/149.5) < N,N-dimethylformamide (123.9/156.4) < N-methylacetamide (125.6/157.7) < N,N-dimethylacetamide (129.2/162.6), reported previously (Siu et al., J. Chem. Phys. 2001; 114: 7045-7051), were validated experimentally by mass spectrometric kinetic method measurements. By monitoring the collision-induced dissociation (CID) of K(+)/Na(+)-bound heterodimers of the amides, the relative affinities were shown to be accurate to within +/-2 kJ mol(-1). With these six theoretical K(+)/Na(+) binding affinities as reference values, the absolute K(+)/Na(+) affinities of imidazole, 1-methylimidazole, pyridazine and 1,2-dimethoxyethane were determined by the extended kinetic method, and found to be consistent (to within +/-9 kJ mol(-1)) with literature experimental values obtained by threshold-CID, equilibrium high-pressure mass spectrometry, and Fourier transform ion cyclotron resonance/ligand-exchange equilibrium methods. A self-consistent resolution is proposed for the inconsistencies in the relative order of K(+)/Na(+) affinities of amides reported in the literature. These two sets of validated K(+) and Na(+) affinity values are useful as reference values in kinetic method measurements of K(+)/Na(+) affinity of model biological ligands, such as the K(+) affinities of aliphatic amino acids.  相似文献   

7.
用密度泛函理论(DFT)的B3-LYP方法和原子簇模型研究了碘和修饰银(110)表面对甲醇吸附的影响。结果表明,甲醇分子在干净的银表面吸附很弱甚至不吸附,但在氧或碘修饰过的银表面上,由于预吸附导致吸附能的增加而变得容易吸附。并进一步采用目前较新的映像电荷模型计算验证了在甲醇部分氧化制甲醛反应中氧或碘对银催化剂表面修饰的本质是电荷修饰这一推论,为实验中如何筛选修饰提供了良好的判据。  相似文献   

8.
Oxidative coupling of alcohols (methanol and ethanol) and dimethylamine on atomic-oxygen-activated Au(111) occurs entirely on the surface to form the corresponding amides when the alkoxy of the alcohol and the amide derived from the amine are co-adsorbed. For effective oxygen-assisted coupling the formation of the amide requires excess methanol. Mechanistic studies reveal that molecularly adsorbed methanol removes excess adsorbed atomic oxygen efficiently, precluding either secondary oxidation or oxidative dehydrogenation of dimethylamide to the imine. The adsorbed amide then can react with the aldehyde produced by β-hydride elimination from the alkoxy to form the hemiaminal, the reactive intermediate leading to coupling. The selectivity for formamide production can be increased to nearly 100?% in excess methanol.  相似文献   

9.
The relative static permittivity at 1 MHz and high frequency limit permittivity at wavelength of sodium-D line of the binary mixtures of ethanolamine (2-aminoethanol) with alcohols (ethyl alcohol, ethylene glycol and glycerol) and amides (formamide, N,N-dimethylformamide and N,N-dimethylacetamide) have been investigated over the entire concentration range at 30 °C. The excess permittivity and Kirkwood correlation factor of the binary mixtures were determined to explore the hydrogen-bonded hetero-molecular interactions and their dependence on the number of hydroxyl groups of alcohols molecules and the extent of substitution in amides molecules. Results confirm that ethanolamine form weak H-bond interactions with alcohols, N,N-dimethylformamide and N,N-dimethylacetamide, but the dipolar alignments in these mixtures vary with number of hydroxyl group of alcohols and their molecular size. Comparatively strong H-bond interactions were found between ethanolamine and formamide molecules with reduce in number of parallel aligned effective dipoles.  相似文献   

10.
The enthalpies of transfer of formamide, N-methylformamide and N,N-dimethylformamide from methanol to methanol+dimethylsulfoxide solvent systems have been measured. These data are analysed in terms of a recently developed model of solvation in mixed solvents. The results of the data analyses indicate that preferential solvation of the different functional groups of the amides differs, the carbonyl oxygen being preferentially solvated by methanol and the nitrogen protons are by dimethylsulfoxide.  相似文献   

11.
The gas phase ion-molecule reactions of silver cluster cations (Ag(n)(+)) and silver hydride cluster cations (Ag(m)H(+)) with 2-iodoethanol have been examined using multistage mass spectrometry experiments in a quadrupole ion trap mass spectrometer. These clusters exhibit size selective reactivity: Ag(2)H(+), Ag(3)(+), and Ag(4)H(+) undergo sequential ligand addition only, while Ag(5)(+) and Ag(6)H(+) also promote both C-I and C-OH bond activation of 2-iodoethanol. Collision induced dissociation (CID) of Ag(5)HIO(+), the product of C-I and C-OH bond activation by Ag(5)(+), yielded Ag(4)OH(+), Ag(4)I(+) and Ag(3)(+), consistent with a structure containing AgI and AgOH moieties. Ag(6)H(+) promotes both C-I and C-OH bond activation of 2-iodoethanol to yield the metathesis product Ag(6)I(+) as well as Ag(6)H(2)IO(+). The metathesis product Ag(6)I(+) also promotes C-I and C-OH bond activation.DFT calculations were carried out to gain insights into the reaction of Ag(5)(+) with ICH(2)CH(2)OH by calculating possible structures and their energies for the following species: (i) initial adducts of Ag(5)(+) and ICH(2)CH(2)OH, (ii) the subsequent Ag(5)HIO(+) product, (iii) CID products of Ag(5)HIO(+). Potential adducts were probed by allowing ICH(2)CH(2)OH to bind in different ways (monodentate through I, monodentate through OH, bidentate) at different sites for two isomers of Ag(5)(+): the global minimum "bowtie" structure, 1, and the higher energy trigonal bipyramidal isomer, 2. The following structural trends emerged: (i) ICH(2)CH(2)OH binds in a monodentate fashion to the silver core with little distortion, (ii) ICH(2)CH(2)OH binds to 1 in a bidentate fashion with some distortion to the silver core, and (iii) ICH(2)CH(2)OH binds to 2 and results in a significant distortion or rearrangement of the silver core. The DFT calculated minimum energy structure of Ag(5)HIO(+) consists of an OH ligated to the face of a distorted trigonal bipyramid with I located at a vertex, while those for both Ag(4)X(+) (X = OH, I) involve AgX bound to a Ag(3)(+) core. The calculations also predict the following: (i) the ion-molecule reaction of Ag(5)(+) and ICH(2)CH(2)OH to yield Ag(5)HIO(+) is exothermic by 34.3 kcal mol(-1), consistent with the fact that this reaction readily occurs under the near thermal experimental conditions, (ii) the lowest energy products for fragmentation of Ag(5)HIO(+) arise from loss of AgI, consistent with this being the major pathway in the CID experiments.  相似文献   

12.
For the first time, the structures and energies for the hydrogen bonding of a 1:1 complex formed between formamide and methanol molecules have been computed with various pure and hybrid density functional theory (DFT) and ab initio methods at varied basis set levels from 6‐31g to 6‐31+g(d,p). Five reasonable geometries on the potential energy surface of methanol and formamide system are considered and their relative stability is discussed. The infrared (IR) spectrum frequencies, IR intensities, and vibrational frequency shifts are reported. From the systematic studies, it is found that all the DFT methods selected here correctly compute the dimerization energies and geometries, with the B3P86 method predicting the hydrogen bond lengths relatively shorter and BPW91 yielding the interaction energies relatively lower. Finally, the solvent effects on the geometries of the formamide–methanol complexes have also been investigated using self‐consistent reaction field (SCRF) calculations with five different DFT methods at the 6‐31+g(d,p) basis set level. The results indicate that the polarity of the solvent has played an important role on the structures and relative stabilities of different isomers. Moreover, the basis set superposition error correction is critical to the interaction energies in the polar solvents. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

13.
Herein, we show that cyclotriphosphazenes carrying organo amino side chains, (RNH)6P3N3 [R = n-propyl (1), cyclohexyl (2), benzyl (3)], and (C4H8N)6P3N3 (4) produce supramolecular coordination compounds in conjunction with silver salts by formation of linear N-Ag-N connections via nitrogen centers of the phosphazene ring. Crystalline materials were obtained by layering methanol solutions containing phosphazene ligands with methanol solutions of AgClO4 and AgNO3. The donor ability of the anion and the steric demand of the lipophilic ligand sphere R control the topology of the coordination network: (1)2(AgClO4)3 forms a graphite-type (6,3) network. All three N(ring) atoms of the phosphazene ligand coordinate to silver ions, which, in return, linearly bridge two phosphazene ligands. The phosphazene-Ag(I) arrangement in 1(AgNO3)2 exists of zigzag chains featuring one bridging silver ion and one terminally coordinated silver ion per ligand molecule. The terminally located Ag(I) ions of neighboring chains are bridged by nitrate ions, resulting in a 2D network. Both 2(AgClO4) and 4(AgClO4) contain only one bridging silver ion per phosphazene ligand, which leaves one N(ring) site vacant and gives 1D zigzag chain arrangements. The crystal structures of 3(AgClO4)2 and 3(AgNO3)2 resemble that of 1(AgNO3)2, but show additional Ag-pi(aryl) interactions between the terminally arranged silver ions and benzyl groups. Treatment of 3 with a methanol solution containing both AgNO3 and AgClO4 leads to the heteroanion derivative 3(AgNO3)(AgClO4). Phosphazene ligands 1-3 have the ability to undergo hydrogen bonding to anions via the six NH groups, and the coordination polymers containing these ligands feature dense networks of NH...O bonds.  相似文献   

14.
Porous monolithic gels based on silica with pore size from 16 nm to 3–5 μm have been synthesized using sol–gel technology. Parameters of porous structure are determined by the components molar ratio in the reaction mixture. The reduction processes of silver ions by formamide in the synthesized porous gel were studied. It has been shown that at the initial stage of the reaction, silver particles with size up to 10 nm are formed in the absence of any stabilizers. The composites Ag/SiO2 were synthesized by means of the threefold impregnation of porous monoliths using the solution of silver nitrate in the mixture of methanol and formamide. Their catalytic activity in the CO oxidation was studied. It was discovered that after activation in oxygen and hydrogen the samples display a low temperature activity, which depends on the number of Si–O-nonbridging oxygen groups on the surface of silica porous monoliths.  相似文献   

15.
Multistage mass spectrometry (MS(n)) experiments reveal that gas phase silver iodide cluster cations, Ag(n)I(m)(+), are readily built up in a stepwise fashion via ion-molecule reactions between mass selected silver (Ag(3)(+) and Ag(5)(+)) or silver hydride (Ag(2)H(+) and Ag(4)H(+)) cluster cations and allyl iodide, in contrast to their reactions with methyl iodide, which solely result in ligation of the clusters. The stoichiometries of these clusters range from 1 < or = n < or = 5 and 1 < or = m < or = 4, indicating the formation of several new subvalent silver iodide clusters. Collision induced dissociation (CID) experiments were carried out on each of these clusters to shed some light on their possible structures. The products arising from CID of the Ag(n)I(m)(+) clusters are highly dependent on the stoichiometry of the cluster. Thus the odd-electron clusters Ag(4)I(2)(+) and Ag(5)I(+) fragment via loss of a silver atom. In contrast, the even-electron cluster ions all fragment via loss of AgI. In addition, Ag(2)I(2) loss is observed for the Ag(4)I(3)(+) and Ag(5)I(2)(+) clusters, while loss of Ag(3)I(3) occurs for the stoichiometric Ag(5)I(4)(+) cluster. DFT calculations were carried out on these Ag(n)I(m)(+) clusters as well as the neutrals associated with the ion-molecule and CID reactions. A range of different isomeric structures were calculated and their structures are described. A noteworthy aspect is that ligation of these silver clusters by I can have a profound effect on the geometry of the silver cluster. For example, D(3h) Ag(3)(+) becomes C(2v) Ag(3)I(+), which in turn becomes C(2h) Ag(3)I(2)(+). Finally, the DFT predicted thermochemistry supports the different types of reaction channels observed in the ion-molecule reactions and CID experiments.  相似文献   

16.
Multi-stage mass spectrometry (MSn) on [(M + Ag - H)x + Ag]+ precursor ions (where M = an amino acid such as glycine or N,N-dimethylglycine) results in the formation of stable silver (Ag3+, Ag5+ and Ag7+) and silver hydride (Ag2H+, Ag4H+ and Ag6H+) cluster cations in the gas phase. Deuterium labelling studies reveal that the source of the hydride can be either from the alpha carbon or from one of the heteroatoms. When M = glycine, the silver cyanide clusters Ag4CN+ and Ag5(H,C,N)+ are also observed. Collision induced dissociation (CID) and DFT calculations were carried out on each of these clusters to shed some light on their possible structures. CID of the Agn+ and Ag(n-1)H+ clusters generally results in the formation of the same Ag(n-2)+ product ions via the loss of Ag2 and AgH respectively. DFT calculations also reveal that the Agn+ and Ag(n-1)H+ clusters have similar structural features and that the Ag(n-1)H+ clusters are only slightly less stable than their all silver counterparts. In addition, Agn+ and Ag(n-1)H+ clusters react with 2-propanol and 2-butylamine via similar pathways, with multiple ligand addition occurring and a coupled deamination-dehydration reaction occurring upon condensation of a third (for Ag2H+) or a fourth (for all other silver clusters) 2-butylamine molecule onto the clusters. Taken together, these results suggest that the Agn+ and Ag(n-1)H+ clusters are structurally related via the replacement of a silver atom with a hydrogen atom. This replacement does not dramatically alter the cluster stability or its unimolecular or bimolecular chemistry with the 2-propanol and 2-butylamine reagents.  相似文献   

17.
The silver acetate cation CH(3)CO(2)Ag(2)(+) reacted with allyl iodide via C-O bond coupling to produce Ag(2)I(+) and allyl acetate, but only underwent adduct formation with methyl iodide, highlighting the importance of substrate on reactivity. DFT calculations predicted the reaction with allyl iodide to be exothermic by 0.48 eV, and suggested that intermediates in the reaction benefit from multiple interactions between the allyl and iodide moieties of allyl iodide and the two silver atoms in CH(3)CO(2)Ag(2)(+).  相似文献   

18.
The adsorption of Ag, Au, and Pd atoms on benzene, coronene, and graphene has been studied using post Hartree-Fock wave function theory (CCSD(T), MP2) and density functional theory (M06-2X, DFT-D3, PBE, vdW-DF) methods. The CCSD(T) benchmark binding energies for benzene-M (M = Pd, Au, Ag) complexes are 19.7, 4.2, and 2.3 kcal/mol, respectively. We found that the nature of binding of the three metals is different: While silver binds predominantly through dispersion interactions, the binding of palladium has a covalent character, and the binding of gold involves a subtle combination of charge transfer and dispersion interactions as well as relativistic effects. We demonstrate that the CCSD(T) benchmark binding energies for benzene-M complexes can be reproduced in plane-wave density functional theory calculations by including a fraction of the exact exchange and a nonempirical van der Waals correction (EE+vdW). Applying the EE+vdW method, we obtained binding energies for the graphene-M (M = Pd, Au, Ag) complexes of 17.4, 5.6, and 4.3 kcal/mol, respectively. The trends in binding energies found for the benzene-M complexes correspond to those in coronene and graphene complexes. DFT methods that use empirical corrections to account for the effects of vdW interactions significantly overestimate binding energies in some of the studied systems.  相似文献   

19.
Abstract

ESCA results for four tetraaza macrocyclic ligands and their silver(II) complexes have been measured. The Ag 3d binding energies of these complexes fall in the narrow range of 374.3–375.3 eV (3d3/2) and 368.2–375.3 eV (3d3/2) and 368.2–369.3 eV (3d5/2) which are in agreement with the Eb values published previously for silver(II) complexes containing nitrogen donor ligands. Ring substitution with methyl groups has no pronounced influence on the Ag 3d, binding energies while ring size variation does cause a small shift in the binding energies. Ring strain energy is invoked as the probable reason for the observed effect.  相似文献   

20.
The reaction of 1,1,1,5,5,5-hexafluoroacetylacetone (Hhfac) with Ag2O in the presence of L=THF, toluene, and Me3SiCH=CH2 was studied to obtain [Ag(hfac)L]x complexes for use as chemical vapor deposition precursors. The structures and volatilities of these three complexes were compared to those of the previously synthesized Ag(hfac)(Me3SiC triple bond CSiMe3), 1, which was also crystallographically characterized for comparison. The reaction of Ag2O with Hhfac in THF forms the polymeric complex [Ag4(hfac)4(THF)2]infinity, 2, which has tetrametallic subunits with hfac ligands that bridge via oxygen and carbon. Both 4- and 5-coordinate silver metal centers are found in 2. Ag2O reacts with Hhfac in toluene to form a complex with a similar tetrametallic unit [Ag4(hfac)4(toluene)2]infinity, 3. In this case, the tetrametallic subunits are assembled via bridging toluene molecules, and each silver is 6-coordinate. In the presence of excess vinyltrimethylsilane (vtms), Ag2O and Hhfac form [Ag3(hfac)3(vtms)]infinity, 4, which contains trimetallic subunits assembled via oxygen atoms of bridging hfac ligands and 5- and 6-coordinate silver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号