首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Statistical characteristics of a non-premixed turbulent flame formed in a curved-rectangular duct and spatio-temporal structures of the thermal field were investigated experimentally. The flame was much affected by a strong pressure gradient in the radial direction of the duct curvature, which caused strong gradient diffusion in turbulent heat transfer on the inner-wall side of the flame and, in contrast, counter-gradient heat transfer on the outer-wall side. Two-point correlation measurement of temperature fields revealed that, in the strong gradient diffusion region, a spatial thermal pattern generated by turbulent mixing of high- and low-temperature fluid parcels was advected downstream with little diffusion. In contrast, the pattern was attenuated and diffused rapidly in the counter-gradient diffusion region. These results accurately correspond to the generation mechanism of the counter-gradient heat transport so far observed in stably stratified turbulent flows.  相似文献   

2.
An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl intensity on the flow and combustion characteristics. First, stream lines and velocity distribution in the flow field were obtained using PIV (Particle Image Velocimetry) method in a model burner. In contrast with the axial flow without swirl, highly swirled air induced streamlines going along the burner tile, and its backward flow was generated by recirculation in the center zone of the flow field. In the combustion, the flame shape with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure was examined by measuring OH and CH radicals intensity and by calculating Damkohler number (Da) and turbulence Reynolds number (Re T ). It appeared that luminescence intensity decreased at higher swirl number due to the recirculated flue gas, and the flat flames were comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the flue gas widely contacted on the flame front, and decreased the flame temperature and emissions concentration as thermal NO. The homogeneous temperature field due to the widely flat flame was obtained, and the RMS in the high temperature region was rather lower at higher swirl number. Consequently, the stable flat flame with low NO concentration was achieved.  相似文献   

3.
Experimental characterization of non-premixed turbulent jet propane flames   总被引:1,自引:0,他引:1  
This paper reports an experimental study conducted on turbulent jet propane flames aiming at further understanding of turbulent structure in non-premixed slow-chemistry combustion systems. Measurements of mean and fluctuating velocity and temperature fields, mean concentration of major chemical species, correlation between velocity and temperature fluctuations, and dissipation of temperature fluctuations are reported in a turbulent round jet non-premixed propane flame, Re=20 400 and 37 600, issuing vertically in still air. The experimental conditions were designed to provide a complete definition of the upstream boundary conditions in the measurement domain for the purpose of validating computational models. The measured data depicts useful flow field information for describing turbulent non-premixed slow-chemistry flames. Velocity–temperature correlation measurements show turbulent heat fluxes tended to be restricted to the mixing layer where large temperature gradients occurred. Observations of non-gradient diffusion of heat at x/D=10 were verified. Temperature fluctuation dissipation, χ, showed the highest values in the shear layer, where the variance of temperature fluctuations was maximum and combustion occurred. The isotropy between the temperature dissipation in the radial and tangential directions was confirmed. By contrast, the observed anisotropy between axial and radial directions of dissipation suggests the influence of large structures in the entrainment shear layer on the production of temperature fluctuations in the flame region. The value of the normalized scalar dissipation at the stoichiometric mixture fraction surface, χst, was calculated, and ranges between 2 and 4 s−1. The measured data were used to estimate the budgets in the balance equations for turbulent kinetic energy, Reynolds shear stresses, turbulent heat flux and temperature variance, quantifying the mechanisms involved in the generation of turbulence as well as in the transport of the temperature.  相似文献   

4.
Previous researchers have demonstrated that strong pulsations of the fuel flow rate can significantly reduce the flame length and luminosity of laminar/transitional non-premixed jet flames. The physical mechanisms responsible for these changes are investigated experimentally in acoustically-forced jet flows where the peak velocity fluctuations are up to eight times the mean flow velocity. Both reacting and non-reacting flows were studied and Reynolds numbers, based on the mean flow properties, ranged from 800 to 10,000 (corresponding to peak Reynolds numbers of 1,450–23,000), and forcing frequencies ranged from 290 to 1,140 Hz. Both the first and second organ-pipe resonance modes of the fuel delivery tube were excited to obtain these frequencies. An analysis of the acoustic forcing characteristics within the resonance tube is provided in order to understand the source of the high amplitude forcing. Flow visualization of jets with first resonant forcing confirms the presence of large-scale coherent vortices and strong reverse flow near the exit of the fuel tube. With second-resonant forcing, however, vortices are not emitted from the tube as they are drawn back into the fuel tube before they can fully form. Increased fine-scale turbulence is associated with both resonant cases, but particularly at second resonance. The power spectra of the velocity fluctuations for a resonantly pulsed jet show the presence of an inertial subrange indicating that the flow becomes fully turbulent even for mean-Reynolds-number jets that are nominally laminar. It is shown that these pulsed jet flows exhibit strong similarities to synthetic jets and that the Strouhal number, based on the maximum velocity at the fuel tube exit, is the dominant parameter for scaling these flows. The Strouhal number determines the downstream location where the coherent vortices breakdown, and is found to provide better collapse of flame length data (both current and previous) than other parameters that have been used in the literature.  相似文献   

5.
6.
A three-dimensional (3-D) imaging system for studies of reactive and non-reactive flows is described. It can be used to reveal the topology of turbulent structures and to extract 3-D quantities, such as concentration gradients. Measurements are performed using a high repetition rate laser and detector system in combination with a scanning mirror. In this study, the system is used for laser-induced incandescence measurements to obtain quantitative 3-D soot volume fraction distributions in both laminar and turbulent non-premixed flames. From the acquired data, iso-concentration surfaces are visualised and concentration gradients calculated.  相似文献   

7.
8.
Fractal analysis of turbulent premixed flame surface   总被引:3,自引:0,他引:3  
The fractal-like character of the laminar flamelet surface in turbulent premixed combustion of lean methane/air mixtures was studied by using the laser tomography technique to visualize the instantaneous flame surface in the two-dimensional section cut by the laser sheet. The fractal analysis of the surface revealed that the surface actually exhibits a self-similarity behavior in a narrow range of scale, and the value of fractal dimension can be defined. The inner cutoff scale was the laminar flame thickness, while the outer cutoff scale was the flame size. The fractal dimension was found to depend on the orientation of the section, and to increase towards downstream. It is suggested that the observed fractal-like character is not directly connected to approach flow turbulence, but should represent certain aspects of the flamelet itself.  相似文献   

9.
Digital image analysis of cine pictures of an unconfined rich premixed turbulent flame has been used to determine structural characteristics of the turbulent/non-turbulent interface of the flame. The results, comprising various moments of the interface position, probability density functions and correlation functions, establish that the instantaneous flame-interface position is essentially a Gaussian random variable with a superimposed quasi-periodical component. The latter is ascribable to a pulsation caused by the convection and the stretching of ring vortices present within the flame. To a first approximation, the flame can be considered similar to a three-dimensional axisymmetric turbulent jet, with superimposed ring vortices, in which combustion occurs.  相似文献   

10.
 Detection of soot by laser-induced incandescence (LII) and fuel-rich (PAH containing) regions by laser-induced fluorescence (LIF) is demonstrated in a turbulent, Re=2500, ethylene gas-jet diffusion flame. Simultaneous combined LIF–LII images allow identification of regions containing PAH or soot and their relative spatial relationship. Separate LII images confirm the identity of the soot containing regions shown in the LIF–LII images. Variations in the size, structure, spatial location and intensity of the PAH and soot containing regions are shown qualitatively in the images and quantified through histograms of image intensities and spatial extents. Received: 9 September 1996/Accepted: 4 February 1997  相似文献   

11.
A new imaging technique was developed that provides two-dimensional images of the mixture fraction (ξ), scalar dissipation rate (χ), temperature (T), and fuel consumption rate in a turbulent non-premixed jet flame. The new method is based on “seeding” nitric oxide (NO) into a particular carbon monoxide–air flame in which it remains passive. It is first demonstrated that the mass fraction of NO is a conserved scalar in the present carbon monoxide–air flame configuration, using both laminar flame calibration experiments and computations with full chemistry. Simultaneous planar laser-induced fluorescence (PLIF) and planar Rayleigh scattering temperature imaging allow a quantitative determination of the local NO mass fraction and hence mixture fraction in the turbulent jet flame. The instantaneous mixture fraction fields in conjunction with the local temperature fields are then used to determine quantitative scalar dissipation rate fields. Advantages of the present technique include an improved signal-to-noise ratio over previous Raman scattering techniques, improved accuracy near the stoichiometric contour because simplifying chemistry assumptions are not required, and the ability to measure ξ and χ in flames experiencing localized extinction. However, the method of measuring ξ based on the passive NO is restricted to dry carbon monoxide–air flames due to the well-controlled flame chemistry. Sample imaging results for ξ, χ, T, and are presented that show high levels of signal-to-noise while resolving the smallest mixing scales of the turbulent flowfield. The application, accuracy, and limitations of the present technique are discussed.  相似文献   

12.
The motion of small particles in the wall region of turbulent channel flows has been investigated using direct numerical simulation. It is assumed that the particle concentration is low enough to allow the use of one-way coupling in the calculations, i.e. the fluid moves the particles but there is no feedback from the particles on the fluid motion. The velocity of the fluid is calculated by using a pseudospectral, direct solution of the Navier-Stokes equations. The calculations indicate that particles tend to segregate into the low-speed regions of the fluid motion near the wall. The segregation tendency depends on the time constant of the particle made non-dimensional with the wall shear velocity and kinematic viscosity. For very small and very large time constants, the particles are distributed more uniformly. For intermediate time constants (of the order 3), the segregation into the low-speed fluid regions is the highest. The finding that segregation occurs for a range of particle time constants is supported by experimental results. The findings regarding the more uniform distributions, however, still remain to be verified against experimental data which is not yet available. For horizontal channel flows, it is also found that particles are resuspended by ejections (of portions of the low-speed streaks) from the wall and are, therefore, primarily associated with low-speed fluid. The smaller particles are flung further upwards and, as they fall back towards the wall, they tend to be accelerated close to the fluid velocity. The larger particles have greater inertia and, consequently, accelerate to lower velocities giving higher relative velocities. This velocity difference, as a function of wall-normal distance, follows the same trend as in experiments but is always somewhat smaller in the calculations. This appears to be due to the Reynolds number for the numerical simulation being smaller than that in the experiment. It is concluded that the average particle velocity depends not only on the wall variables for scaling, but also on outer variables associated with the mean fluid velocity and fluid depth in the channel. This is because fluid depth in combination with the wall shear velocity determines how much time a particle, of a given size and density, spends in the outer flow and, hence, how close it gets to the local fluid velocity.  相似文献   

13.
CH double-pulsed PLIF measurement in turbulent premixed flame   总被引:1,自引:0,他引:1  
The flame displacement speeds in turbulent premixed flames have been measured directly by the CH double-pulsed planar laser-induced fluorescence (PLIF). The CH double-pulsed PLIF systems consist of two independent conventional CH PLIF measurement systems and laser beams from each laser system are led to same optical pass using the difference of polarization. The highly time-resolved measurements are conducted in relatively high Reynolds number turbulent premixed flames on a swirl-stabilized combustor. Since the time interval of the successive CH PLIF can be selected to any optimum value for the purpose intended, both of the large scale dynamics and local displacement of the flame front can be discussed. By selecting an appropriate time interval (100–200 μs), deformations of the flame front are captured clearly. Successive CH fluorescence images reveal the burning/generating process of the unburned mixtures or the handgrip structures in burnt gas, which have been predicted by three-dimensional direct numerical simulations of turbulent premixed flames. To evaluate the local flame displacement speed directly from the successive CH images, a flame front identification scheme and a displacement vector evaluation scheme are developed. Direct measurements of flame displacement speed are conducted by selecting a minute time interval (≈30 μs) for different Reynolds number (Re λ = 63.1–115.0). Local flame displacement speeds coincide well for different Reynolds number cases. Furthermore, comparisons of the mean flame displacement speed and the mean fluid velocity show that the convection in the turbulent flames will affect the flame displacement speed for high Reynolds number flames.  相似文献   

14.
The regular and random mixing structures in a turbulent diffusion flame were investigated using the quantitative, dynamic crossed-beam schlieren method. Evidence was found close to the nozzle relating to the vortexlike structure of eddies surrounding the central fuel jet flow. The observations also make possible resolution of turbulent intensity, scales, convection, and spectra within the diffusion flame without the use of seeding or intrusion of measuring probes. It is found that length scales and other turbulence parameters in the diffusion flame progressively revert to values similar to those expected and observed in scalar passive mixing as the combustion reaction intensity reduces with axial distance from the nozzle system.  相似文献   

15.
A finite element formulation of enclosed turbulent diffusion flames is presented. A primitive variables approach is preferred in the analysis. A mixed interpolation is employed for the velocity and pressure. In the solution of the Navier-Stokes equations, a segregated formulation is adopted, where the pressure discretization equation is obtained directly from the discretized continuity equation, considering the velocity-pressure relationships in the discretized momentum equations. The state of turbulence is defined by a κ–? model. Near solid boundaries, a wall function approach is employed. The combustion rates are estimated using the eddy dissipation concept. The expensive direct treatment of the integrodifferential equations of radiation is avoided by employing the moment method, which allows the derivation of an approximate local field equation for the radiation intensity. The proposed finite element model is verified by investigating a technical turbulent diffusion flame of semi-industrial size, and comparing the results with experiments and finite difference predictions.  相似文献   

16.
The present paper reports on an experimental study to determine the effect of humidity on the flow field and the flame stability limit in turbulent non-premixed flame, and examines the dynamical behavior of the unsteady aerodynamic flow structures observed on a bluff-body burner at both humid and non-humid air combustion states. Particle image velocimetry (PIV) is used to capture the instantaneous appearance of vortex structures and obtain the quantitative velocity field. Streamlines and velocity contours analysis are used to identify specific flame structures and reveal the effect of steam added on the vortex structure. The results show both central fuel penetration limit and partially quenching limit in the humid air case reduce. The decrease in the critical penetration limit is primarily attributed to a reduction in momentum of the humid air. The flamelet concepts are applied to discuss the partially quenching limit in the blue neck region. The analysis reveals that the large decrease in the partially quenching limit is due to the increase in chemical reaction time of the humid air combustion.  相似文献   

17.
The paper reports on the nonintrusive, simultaneous measurement of velocity and temperature fluctuations in a turbulent jet diffusion flame. Velocity fluctuations were measured using laser Doppler anemometry (LDA), whereas coherent anti-Stokes Raman spectroscopy (CARS) was used for temperature measurements. The simultaneous measurements were affected by both density bias and velocity bias because the LDA imposed a form of biased sampling on the CARS. The measured velocity-temperature correlation coefficients indicated that the gradient-diffusion hypothesis is reasonably accurate for the radial direction. However, for the axial direction the gradient diffusion hypothesis is accurate only in the central region of the flame, while countergradient diffusion is found in the outer region.  相似文献   

18.
Two-point concentration measurements are obtained in a meandering passive-scalar plume released at five different heights within the fully-turbulent region of a high-Reynolds number turbulent boundary layer (TBL). Mean statistics of two-point concentration measurements are found to agree very well with the single-point measurements previously reported in Talluru et al. (2017a). The two-point correlation results of concentration indicate strong coherence in the scalar field similar to the large-scale coherence observed in the streamwise velocity fluctuations in a TBL (Marusic and Heuer, 2007). Particularly, the isocontours in the two-dimensional correlation map of concentration fluctuations illustrate that the scalar structures are inclined at 30 to the direction of the flow; such a trend is consistently observed for all the elevated plumes below z/δ ≤ 0.33. This observation of steeper inclination angle of scalar structures relative to the inclination angle of large-scale velocity fluctuations in a TBL is explained using the physical model put forth by Talluru et al. (2018). Most importantly, these results provide insights on the differences in the structural organisation of a passive scalar plume in the near- and the far-field regions.  相似文献   

19.
Tomographic PIV measurements in a turbulent lifted jet flame   总被引:1,自引:0,他引:1  
Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.  相似文献   

20.
In a theoretical study of turbulent burning it is usually assumed that the average rate of the chemical reaction (heat release) is determined only by the average temperature. Ya. B. Zel'dovich [1] and later T. Karman [2] noted the necessity of taking into account the effect of temperature pulsations on the reaction rate. A quantitative estimate of this effect on the reaction rate constant is given in [3]. A critical analysis of various approaches to the theoretical study of turbulent flames is given in the reviews [4, 5]. In the present article, it is shown that, taking the pulsation component of the temperature and concentration into account, the average rate of the chemical reaction depends on the gradient of the mean temperature and the scale of the turbulent pulsations. The case, where a first-order reaction takes place in the flame is studied in detail. Existence and uniqueness theorems which determine the limits of the propagation of flames are proven. Quantitative rules for the propagation rate, limit, and structure of a turbulent flame front are analyzed with respect to the results of a numerical calculation of a series of variants. Dimensional interpolation equations are presented for the total propagation rate of a flame.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 65–76, May–June, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号