首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolytic enzymes were evaluated on the lipid accumulation via an oleaginous fungal species, Mortierella isabellina, cultivated on sugars released from soybean hulls. The weight loss of soybean hull, fungal growth, and lipid production were tested under different loads of hydrolytic enzymes. M. isabellina could not directly utilize cellulose and adding cellulase and ??-glucosidase significantly increased the cell growth and oil accumulation of M. isabellina on soybean hulls. The highest weight loss of soybean hulls was 47.80?% and the lipid production reached 0.14?g from 1?g of soybean hull when 12?U cellulase, 27.2?U ??-glucosidase, 2,278.56?U pectinase, and 15?U hemicellulase were added. Fatty acids (76.82?%) accumulated in M. isabellina were C16 and C18, which are suitable for biodiesel production. These results provide a new application for soybean hulls to be applied as the raw material for the production of biodiesel fuel, besides its traditional role as animal feed supplements.  相似文献   

2.
Hypocrellin A production by Shiraia sp. SUPER-H168 was studied under solid-state fermentation. Corn was found to be the best substrate after evaluating eight kinds of agro-industrial crops and residues. The optimized solid-state fermentation conditions were as follows: inoculum size 3 × 106 spores, substrate particle size 0.8–1 mm, initial moisture content 50%, and temperature 30 °C. Six kinds of external carbon source and seven kinds of external nitrogen source were evaluated, respectively, for HA production. Glucose and NaNO3 were the best. The combination of them was optimized by the response surface method. The optimum compositions of the supplementary glucose and NaNO3 were 1.65 g/100 g and 0.43 g/L, respectively. Hypocrellin A production reached 4.7 mg/g.  相似文献   

3.
Arachidonic acid (ARA) and eicosapentaenoic acid (EPA) were produced by Pythium irregulare fungus using soybean cotyledon fiber and soy skim, two co-products from soybean aqueous processing, as substrates in different fermentation systems. Parameters such as moisture content, substrate glucose addition, incubation time, and vegetable oil supplementation were found to be important in solid-state fermentation (SSF) of soybean fiber, which is to be used as animal feed with enriched long-chain polyunsaturated fatty acids (PUFA). Soybean fiber with 8 % (dwb) glucose supplementation for a 7-day SSF produced 1.3 mg of ARA and 1.6 mg of EPA in 1 g of dried substrate. When soy skim was used as substrate for submerged fermentation, total ARA yield of 125.7 mg/L and EPA yield of 92.4 mg/L were achieved with the supplementation of 7 % (w/v) soybean oil. This study demonstrates that the values of soybean fiber and soy skim co-products could be enhanced through the long-chain PUFA production by fermentation.  相似文献   

4.
An Aspergillus terreus, isolated from oil contaminated soil, could degrade a wide range of petroleum hydrocarbons including the immediate oxidation products of hydrocarbons, like alkanols and alkanals. Among all the linear chain carbon substrates, highest growth of 39.1 ± 3.8 g l−1 (wet weight) was observed when n-hexadecane was used as the sole source of carbon. The growth of the fungus on this highly hydrophobic substrate was associated with the morphological change of the hyphae and increase production of lipid in the cells. The lipid production in the hydrocarbon (n-hexadecane) grown cells was sevenfold higher than the corresponding glucose grown cells. The fatty acid profile of the lipid content formed in the hydrocarbon grown cells was significantly different from the glucose grown cells and was composed of fatty acids with chain length C14 to C33 as revealed from the liquid chromatography electrospray ionization mass spectrometry analyses. Among the ranges, the fatty acids with chain lengths C14 to C18 were predominant in the profile. Considering the fatty acid profile and the high level of lipid production, this A. terreus mediated production of lipid is envisaged to have potential application in the oleochemical industries including the production of biodiesel.  相似文献   

5.
An extremely alkaliphilic bacterial strain, Bacillus sp. PPKS-2, was isolated from rice mill effluents and screened for the production of extracellular keratinase. The maximum production of keratinase occurred after 48 h in shaking culture at pH 11.0 and 37 °C in a medium containing 0.5% soybean flour. The strain grew and produced alkaline keratinase using chicken feather and horn meal as the sole source of carbon and nitrogen. An addition of 0.1% soybean flour or feather hydrolysate and sodium sulfite to feather medium increased the production and complete solubilization of feather took place within 5 days under solid-state fermentation conditions. The partially purified enzyme displayed maximum activity at pH 11.0 and 60 °C in a broad range of NaCl, 0–16%, and was not inhibited by sodium dodecyl sulfate (10%), ethylenediaminetetraacetic acid (10 mM), H2O2 (15%), and other commercial detergents. Immobilization of the whole cells proved to be useful for continuous production of keratinase and feather degradation. The enzyme was effectively used to remove hair from goat hide. The strain PPKS-2 can be effectively used for solid waste management of poultry feather in submerged as well as solid-state fermentation.  相似文献   

6.
Bacillus subtilis strain TrigoCor 1448 was grown on wheat middlings in 0.5-l solid-state fermentation (SSF) bioreactors for the production of an antifungal biological control agent. Total antifungal activity was quantified using a 96-well microplate bioassay against the plant pathogen Fusarium oxysporum f. sp. melonis. The experimental design for process optimization consisted of a 26−1 fractional factorial design followed by a central composite face-centered design. Initial SSF parameters included in the optimization were aeration, fermentation length, pH buffering, peptone addition, nitrate addition, and incubator temperature. Central composite face-centered design parameters included incubator temperature, aeration rate, and initial moisture content (MC). Optimized fermentation conditions were determined with response surface models fitted for both spore concentration and activity of biological control product extracts. Models showed that activity measurements and spore production were most sensitive to substrate MC with highest levels of each response variable occurring at maximum moisture levels. Whereas maximum antifungal activity was seen in a limited area of the design space, spore production was fairly robust with near maximum levels occurring over a wider range of fermentation conditions. Optimization resulted in a 55% increase in inhibition and a 40% increase in spore production over nonoptimized conditions.  相似文献   

7.

Oilseed crop with high oil content and promising ecological adaptability are potential sources for competitive biodiesel production. This study investigates the scope of utilizing biodiesel development through the methyl and ethyl ester from soybean and mustard oil as an alternative fuel. Methyl and ethyl esters of oils having different fatty acids compositions such as soybean (SOME and SOEE) and mustard oil (MUME and MUEE) were prepared by transesterification with methanol and ethanol in the presence of an alkali-KOH catalyst. The gas chromatographic (GC) analysis of oil samples revealed that primary fatty acid composition in soybean oil was linoleic acid (C18:2, 51.93%), followed by oleic acid (C18:1, 22.82%), palmitic acid (C16:0, 11.56%), linolenic acid (C18:3, 5.95%) and stearic acid (C18:0, 4.32%). Whereas, the main components in mustard oil were erucic acid (C22:1, 32.81%), oleic acid (C18:1, 24.98%), eicosenoic acid (C20:1, 10.44%), linolenic acid (C18:3, 8.61%) and palmitic acid (C16:0, 2.80%). The physicochemical properties (acid value, iodine value, calorific value, flash point, pour point etc.) of methyl and ethyl ester samples were estimated and found to be within the acceptable range of ASTM D6751 standards specifications. The prepared esters and oil samples were examined for cold flow properties by differential scanning calorimetry (DSC). Results revealed better cold flow properties for MUME (−2.55 °C) and MUEE (−3.10 °C) than SOME (3.21 °C) and SOEE (1.83 °C) due to more unsaturated fatty acid content in MU. Thermal and oxidative stability of samples was determined by thermogravimetric analysis (TG) and differential thermal analysis (DTA). The thermal and oxidative stability ranking of the samples was in the order of oil > methyl esters > ethyl esters.

  相似文献   

8.
Horticultural waste collected from a landscape company in Singapore was utilized as the substrate for the production of laccase under solid-state fermentation by Trametes versicolor. The effects of substrate particle size, types of inducers, incubation temperature and time, initial medium pH value, and moisture content on laccase production were investigated. The optimum productivity of laccase (8.6 U/g substrate) was achieved by employing horticultural waste of particle size greater than 500 μm and using veratryl alcohol as the inducer. The culture was at 30 °C for 7 days at moisture content of solid substrate of 85% and initial pH 7.0. The decolorization was also investigated in order to assess the degrading capability of the ligninolytic laccase obtained in the above-mentioned cultures. The decolorization degree of a model dye, phenol red, was around 41.79% in 72 h of incubation. By far, this is the first report on the optimization of laccase production by T. versicolor under solid-state fermentation using horticultural waste as the substrate.  相似文献   

9.
There is an increasing interest for the organic residues from various sectors of agriculture and industries over the past few decades. Their application in the field of fermentation technology has resulted in the production of bulk chemicals and value-added products such as amino acid, enzymes, mushroom, organic acids, single-cell protein, biologically active secondary metabolites, etc. (Ramachandran et al., Bioresource Technology 98:2000–2009, 2007). In this work, the production of extracellular xylanase by the fungus Penicillium canescens was investigated in solid-state fermentation using five agro-industrial substrates (soya oil cake, soya meal, wheat bran, whole wheat bran, and pulp beet). The best substrate was the soya oil cake. In order to optimize the production, the most effective cultivation conditions were investigated in Erlenmeyer flasks and in plastic bags with 5 and 100 g of soya oil cake, respectively. The initial moisture content, initial pH, and temperature of the culture affected the xylanase synthesis. The optimal fermentation medium was composed by soya oil cake crushed to 5 mm supplemented with 3% and 4% (w/w) of casein peptone and Na2HPO4.2H2O. After 7 days of incubation at 30 °C and under 80% of initial moisture, a xylanase production level of 18,895 ± 778 U/g (Erlenmeyer flasks) and 9,300 ± 589 U/g (plastic bags) was reached. The partially purified enzyme recovered by ammonium sulfate fractionation was completely stable at freezing and refrigeration temperatures up to 6 months and reasonably stable at room temperature for more than 3 months.  相似文献   

10.
Cellulosic ethanol fermentation wastewater is the stillage stream of distillation column of cellulosic ethanol fermentation broth with high chemical oxygen demand (COD). The COD is required to reduce before the wastewater is released or recycled. Without any pretreatment nor external nutrients, the cellulosic ethanol fermentation wastewater bioconversion by Trichosporon cutaneum ACCC 20271 was carried out for the first time. The major components of the wastewater including glucose, xylose, acetic acid, ethanol, and partial of phenolic compounds could be utilized by T. cutaneum ACCC 20271. In a 3-L bioreactor, 2.16 g/L of microbial lipid accumulated with 55.05% of COD reduced after a 5-day culture of T. cutaneum ACCC 20271 in the wastewater. The fatty acid composition of the derived microbial lipid was similar with vegetable oil, in which it could be used as biodiesel production feedstock. This study will both solve the environmental problem and offer low-cost lipid feedstock for biodiesel production.  相似文献   

11.
Among all endophytic keratinolytic fungal isolates recovered from marine soft coral Dendronephthya hemprichii, Penicillium spp. Morsy1 was selected as the hyperactive keratinolytic strain under solid substrate fermentation of different agriculture and poultry wastes. The optimization of extraction process, physicochemical parameters affecting the keratinase production in solid-state fermentation, and the purified keratinase parameters were studied. Maximum keratinase activity (1,600 U g−1, initial dry substrate) was recovered from moldy bran with 0.1% Tween 80. The optimized production conditions were rice straw as carbon source, pH of medium 6, growth temperature 26 °C, initial moisture content of 80% (v/w), inoculum size of 105 spores ml−1, and an average particle size of the substrate 0.6 mm (3,560 U g−1, initial dry substrate after 5 days of fermentation). Two types of keratinase (Ahm1 and Ahm2) were purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sepharose, and gel filtration chromatography. Enzyme molecular weights were 19 kDa (Ahm1) and 40 kDa (Ahm2). The kinetic parameters of purified keratinases were optimized for the hydrolysis of azokeratin by Ahm1 (pH 7.0–8.0, stable in pH range of 6.0 to 8.0 at 50 °C) and Ahm2 enzymes (pH 10.0–11.0, stable in pH range of 6.0 to 11.0 at 60–65 °C). Whereas inhibitors of serine (phenylmethylsulfonyl fluoride) and cysteine (iodoacetamide) proteases had minor effects on both Ahm1 and Ahm2 activity, both keratinases were strongly inhibited by chelating agents EDTA and EGTA. These findings suggest that serine and cysteine residues are not involved in the catalytic mechanisms, and they are metalloproteases.  相似文献   

12.
Solid-state fermentation (SSF) is a bioconversion process for turning cheap agro-industrial materials to added-value products. For enrichment of agro-industrial materials with arachidonic acid (ARA; C20:4 n-6), SSF process of Mortierella sp. was developed by optimizing cultivation medium and parameters. The results showed that the fungal cultivation on the medium with optimal ratio of selected agricultural materials provided the fermented mass containing high ARA proportion of total fatty acid. Inclusion of the optimal medium with suitable amount of spent mushroom substrate, which was used as an internal support, significantly promoted the ARA production yield. Using the predicted quadratic model generated by Box–Behnken design, the maximal ARA production yield was achieved, thereby the fermentation parameter set for ARA production was experimentally validated using the developed medium formula. Of variables studied, the culture temperature and initial moisture content were important for the ARA production. The developed SSF process would provide a prospect for larger scale production of ARA by this fungal strain.  相似文献   

13.
In solid-state fermentation, among various solid supports evaluated, banana peel was found to be an ideal support and resulted into higher levels of laccase (6281.4 ± 63.60 U l−1) along with notable levels of manganese peroxidase production (1339.0 ± 131.23 U l−1) by Aspergillus fumigatus VkJ2.4.5. Maximum levels of laccase was achieved under derived conditions consisting of 80% of moisture level, 6 days of incubation period, 6% inoculum level, and an aeration level of 2.5 l min−1. A column-tray bioreactor was designed to scale up and economize the enzyme production in three successive cycles of fermentation using the same fungal biomass. Thermal and pH stability profiles revealed that enzyme was stable up to 50°C and at varying pH range from 5–9 for up to 2 h. The apparent molecular weight of laccase was found to be 34 ± 1 kDa. MALDI-TOF/TOF analysis of the protein showed significant homology with maximum identity of 67% to other laccases reported in database.  相似文献   

14.
This work reports (liquid + liquid) equilibrium (LLE) data for the systems of interest in soybean biodiesel production. Numerical data for LLE were obtained for binary, ternary and quaternary systems comprising fatty acid methyl esters (FAME) and fatty acid ethyl esters (FAEE) from soybean oil, water, glycerol, methanol, and ethanol at temperatures of (303.15, 318.15, and 333.15) K. Quantification of compounds in equilibrium in both phases was determined by analytical methods whereas solubility curves (binodal) were obtained by the cloud-point method. For all systems investigated, good alignments were obtained between phase compositions and the initial as well as overall compositions hence indicating low deviations from the mass balance. Experimental results were correlated using the UNIQUAC model with satisfactory agreement between experiment and theory.  相似文献   

15.
Clostridium acetobutylicum ATCC 824 was grown under three different acetone-butanol-ethanol (ABE) fermentation conditions: (1) strictly anaerobic conditions with vegetative inoculum; (2) semi-anaerobic conditions with vegetative inoculum; and (3) strictly anaerobic conditions with spore inoculum. Semi-anaerobic fermentation with vegetative inoculum and strictly anaerobic fermentation with spore inoculum produced solvents at high level. Strictly anaerobic fermentation with vegetative inoculum showed an “acid crash”, i.e. produced mainly acids and did not switch to predominant solvent production. The content of carbohydrates, nucleic acids, proteins and lipids in Clostridium cells during the fermentation were evaluated from the mid-IR spectra. The content of nucleic acids decreased with process time, and the lipid content increased, corresponding to ceasing growth and formation of the toxic fermentation products. It was shown that the physiological states of either solvent production or acid crash are reflected in the microbial biomass composition, which can be assessed by IR spectroscopy.  相似文献   

16.
Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C14:0 (0.9%), C16:0 (10.8%), C16:1 (9.7%), C18:0 (6.5%), C18:1 (60.3%), and C18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.  相似文献   

17.
Citric acid (CA) production has been conducted through a careful strain selection, physical–chemical optimization and mutation. The aim of this work was to optimize the physical–chemical conditions of CA production by solid-state fermentation (SSF) using the Aspergillus niger LPB BC strain, which was isolated in our laboratory. The parental and mutant strain showed a good production of CA using citric pulp (CP) as a substrate. The physical–chemical parameters were optimized and the best production was reached at 65% moisture, 30 °C and pH 5.5. The influence of the addition of commercial and alternative sugars, nitrogen sources, salts, and alcohols was also studied. The best results (445.4 g of CA/kg of CP) were obtained with sugarcane molasses and 4% methanol (v/w). The mutagenesis induction of LPB BC was performed with UV irradiation. Eleven mutant strains were tested in SSF where two mutants showed a higher CA production when compared to the parental strain. A. niger LPB B3 produced 537.6 g of CA/kg of CP on the sixth day of fermentation, while A. niger LPB B6 produced 616.5 g of CA/kg of CP on the fourth day of fermentation, representing a 19.5% and 37% gain, respectively.  相似文献   

18.
The optimization of process parameters for high amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation was carried out using central composite design. Finally, the optimal parameters obtained with the response surface methodology (RSM) were moisture 610.0 ml/kg, inoculum 30.0 ml (OD600 nm = 20.0)/kg, the amount ratio of wheat bran to rice husk 0.42, cassava starch concentration 20.0 g/kg, temperature 28 °C, and natural pH. Under the optimized conditions, 4,296 U/g of dry substrate of amylase activity was reached in the solid-state fermentation culture of the yeast strain A11 within 160 h, whereas the predicted maximum amylase activity of 4,222 U/g of dry substrate of amylase activity was derived from the RSM regression. It was found that cassava starch can be actively converted into monosaccharides and oligosaccharides by the crude amylase.  相似文献   

19.
Scenedesmus spp. have been reported as potential microalgal species used for the lipid production. This study investigated the effects of light intensity (at three levels: 50, 250, and 400 μmol photons m−2 s−1) on the growth and lipid production of Scenedesmus sp. 11-1 under N-limited condition. Carotenoid to chlorophyll ratio was higher when algae 11-1 grew under 250 and 400 μmol photons m−2 s−1 than that under 50 μmol photons m−2 s−1, while protein contents was lower. Highest biomass yield (3.88 g L−1), lipid content (41.1 %), and neutral lipid content (32.9 %) were achieved when algae 11-1 grew at 400 μmol photons m−2 s−1. Lipid production was slight lower at 250 μmol photons m−2 s−1 level compared to 400 μmol photons m−2 s−1. The major fatty acids in the neutral lipid of 11-1 were oleic acid (43–52 %), palmitic acid (24–27 %), and linoleic acid (7–11 %). In addition, polyunsaturated fatty acids had a positive correlation with total lipid production, and monounsaturated fatty acids had a negative one.  相似文献   

20.
The effects of two biosurfactants, tea saponin (TS) and rhamnolipid (RL), on the production of laccase and the degradation of phenol by P. simplicissimum were investigated in solid-state fermentation consisting of rice straw, rice bran, and sawdust. Firstly, the effects of phenol on the fermentation process were studied in the absence of surfactants. Then, a phenol concentration of 3 mg/g in the fermentation was selected for detailed research with the addition of biosurfactants. The results showed that TS and RL at different concentrations had stimulative effects on the enzyme activity of laccase. The highest laccase activities during the fermentation were enhanced by 163.7%, 68.2%, and 23.3% by TS at concentrations of 0.02%, 0.06%, and 0.10%, respectively. As a result of the enhanced laccase activity, the efficiency of phenol degradation was also improved by both biosurfactants. RL caused a significant increase of fungal biomass in the early stage of the fermentation, while TS had an inhibitory effect in the whole process. These results indicated that RL could mitigate the negative effects of phenol on fungal growth and consequently improve laccase production and phenol degradation. TS was potentially applicable to phenol-polluted solid-state fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号