首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了自晶种成核对聚对苯二甲酸1,3-丙二酯(PTT)结晶行为的影响.示差扫描量热结果表明,经过自晶种成核处理后,PTT的结晶温度明显增加.应用Avrami方程分析了PTT等温结晶动力学,Avrami指数n的平均值为3.34,表明初级结晶为三维球晶生长.自晶种成核导致结晶活化能和链折叠功减小,促进PTT的结晶.  相似文献   

2.
聚丁二酸丁二醇酯的自成核结晶行为   总被引:1,自引:0,他引:1  
利用差示扫描量热仪(DSC)研究了自成核对聚丁二酸丁二醇酯(PBS)的结晶行为的影响. 研究结果表明, PBS的有效自成核温度处理区间为118~120 ℃. PBS经自成核处理后结晶温度提高, 可以在100~118 ℃温度区间内迅速结晶. 同时, 研究了自成核处理后样品在100~104 ℃范围内的等温结晶行为、动力学过程及熔融行为. 结果表明, 随着等温结晶温度的升高, 结晶速率变慢, 熔融曲线出现多重熔融峰. Hoffman-Weeks方程分析结果表明, 自成核处理对PBS的平衡熔点没有影响. Avrami等温结晶动力学方程适合分析自成核处理样品的等温结晶动力学过程, 获得其动力学参数K与n, 其中n值偏大的原因在于自成核的样品结晶生长点增多. 根据Arrhenius方程, 计算获得PBS自成核处理后等温结晶活化能为-286 kJ/mol.  相似文献   

3.
通过直接酯化-缩聚工艺,在聚对苯二甲酸丙二酯(PTT)聚合的酯化过程中加入第三组分间苯二甲酸丙二酯-5-磺酸钠(SIPP),在缩聚过程中加入第四组分聚1,6-己二酸-1,4-丁二醇酯(PBA)或聚乙二醇(PEG)合成了一系列不同的阳离子染料可染PTT,采用氢核磁共振波谱(1H-NMR)、差示扫描量热仪(DSC)和热重分...  相似文献   

4.
The non-isothermal crystallization behavior of poly(trimethylene terephthalate) (PTT) and its blends with a liquid crystalline polymer, namely Vectra A950 (VA), was studied by differential scanning calorimetry. The values of the half-time of crystallization, t 0.5 and the parameter F(T) in the combined Avrami and Ozawa equation indicated that VA can enhance the PTT crystallization rate by acting as a nucleating agent. The crystallization activation energy of the PTT phase increased with increasing VA content. The blends were immiscible, as can be inferred from their morphology. Thermogravimetric analysis of the blends revealed improved thermal stability by the incorporation of VA.  相似文献   

5.
A simple method was developed for preparing nano-BaSO4 suspension by reacting H2SO4 with Ba(OH)2 in 1,3-propanediol (PDO). The zymotechnics 1,3-propanediol and newly prepared nano-BaSO4 suspension were used for fabricating PTT/BaSO4 nanocomposites by in situ polymerization. The size distribution curves revealed that most of the nano-BaSO4 particles in PDO have a diameter of 15–23 nm. Transmission electron microscopy (TEM) showed that BaSO4 disperses uniformly in PTT matrix when BaSO4 content was no more than 12 wt%. The non-isothermal crystallization behavior was studied quantitatively by modified Avrami equation and Ozawa theory. Both theories can successfully describe the non-isothermal crystallization of pure PTT and PTT/nano-BaSO4 composites. The crystallinity and crystallization rate of nanocomposites was greatly increased by addition of BaSO4. The maximum enhancement of crystallization rate for the nanocomposites was observed in nanocomposites containing about 12 wt% BaSO4 with a range of 2–16 wt%, which was confirmed by both Avrami crystallization rate parameter (Zc) and Ozawa crystallization rate parameter logK(T). The Avrami and Ozawa mechanism exponents, n and m of the nanocomposites, were higher than those of neat PTT, suggesting more complicated interaction between molecular chains and the nanoparticles that caused the changes of the nucleation mode and the crystal growth dimension. Effective activation energy calculated from the Friedman formula was reduced as nano-BaSO4 content increased, suggesting that the nano-BaSO4 made the molecular chains of PTT easier to crystallize during the non-isothermal crystallization process. The polarizing micrographs showed that much smaller or less perfect crystals formed in composites due to the interaction between molecular chains and nano-BaSO4 particles.  相似文献   

6.
The nonisothermal melt crystallization behavior of poly(trimethylene terephthalate) (PTT) was investigated using the DSC technique. PTT peak exothermic crystallization temperature was found to move to lower temperatures as the cooling rate was increased. The modified Avrami equation exponent, n, was 4 when the cooling rates were between 5 and 15 °C/min, indicating a thermal nucleation and a three-dimensional spherical growth mechanism. When the cooling rate was increased to 25 °C/min, n gradually decreased to near 3, implying the nucleation mechanism changed to an athermal mode. PTT nonisothermal crystallization behavior could also be analyzed using the Ozawa equation and the combined equations of Ozawa and Avrami with very good fit of the data.PTT spherulite morphologies and the sign of the birefringence depended strongly on the spherulite's growth temperature. When the growth temperature was decreased from 222 to 170 °C, the spherulite changed from a saturation-type dendritic morphology to one with a colorful banded texture; the sign of the birefringence also changed in the following order: from a weakly positive spherulite → mixed spherulite → weakly negative spherulite → negative spherulite → positive spherulite → negative spherulite → positive spherulite.  相似文献   

7.
The nonisothermal cold‐crystallization kinetics and subsequent melting behavior of poly(trimethylene terephthalate) (PTT) were investigated with differential scanning calorimetry. The Avrami, Tobin, and Ozawa equations were applied to describe the kinetics of the crystallization process. Both the Avrami and Tobin crystallization rate parameters increased with the heating rate. The Ozawa crystallization rate increased with the temperature. The ability of PTT to crystallize from the glassy state at a unit heating rate was determined with Ziabicki's kinetic crystallizability index, which was found to be about 0.89. The effective energy barrier describing the nonisothermal cold‐crystallization process of PTT was estimated by the differential isoconversional method of Friedman and was found to range between about 114.5 and 158.8 kJ mol?1. In its subsequent melting, PTT exhibited double‐melting behavior for heating rates lower than or equal to 10 °C min?1 and single‐melting behavior for heating rates greater than or equal to 12.5 °C min?1. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4151–4163, 2004  相似文献   

8.
Crystallization kinetics of crystalline fractions of propylene oxide polymers made with different catalysts have been studied by isothermal dilatometric and microscopical measurements. Isothermal microscopical measurements indicate that spherulite growth in these polymers proceeds from predetermined nuclei. The half time for spherulitic appearance is less than, but of the same order as, the half time for complete crystallization. Only by taking this factor into account can the dilatometric data be represented by the Avrami equation. The deviation of the crystallization isotherm from that predicted from the microscopical data using the Avrami theory is attributed to a secondary crystallization process taking place within the spherulite. Crystallization continues long after spherulites completely occupy the available volume in the polymer. By assuming that the secondary crystallization proceeds as a first-order process in the uncrystallized, but crystallizable, portions of the melt, it is shown that the crystallization isotherms can be completely described in terms of four parameters. These are: (1) the time constant for the primary crystallization process; (2) the time constant for nucleation; (3) the time constant for the secondary crystallization process, and (4) the extent of secondary crystallization. The important conclusions of these studies are: the rates of nucleation and of spherulitic growth are far more dependent on temperature than on stereoregularity; the ratio of the rate of the secondary crystallization process to that of the primary crystallization process is almost independent of temperature, but increases with increasing stereoregularity of the polymer.  相似文献   

9.
The isothermal crystallization kinetics of poly(trimethylene terephthalate) (PTT) have been investigated using differential scanning calorimetry (DSC) and polarized light microscopy (PLM). Enthalpy data of exotherm from isothermal crystallization were analyzed using the Avrami theory. The average value of the Avrami exponent, n, is about 2.8. From the melt, PTT crystallizes according to a spherulite morphology. The spherulite growth rate and the overall crystallization rate depend on crystallization temperature. The increase in the spherulitic radius was examined by polarized light microscopy. Using values of transport parameters common to many polymers (U* = 1500 cal/mol, T= Tg − 30 °C) together with experimentally determined values of T (248 °C) and Tg (44 °C), the nucleation parameter, kg, for PTT was determined. On the basis of secondary nucleation analyses, a transition between regimes III and II was found in the vicinity of 194 °C (ΔT ≅ 54 K). The ratio of kg of these two regimes is 2.1, which is very close to 2.0 as predicted by the Lauritzen–Hoffman theory. The lateral surface‐free energy, σ = 10.89 erg/cm2 and the fold surface‐free energy, σe = 56.64 erg/cm2 were determined. The latter leads to a work of chain‐folding, q = 4.80 kcal/mol folds, which is comparable to PET and PBT previously reported. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 934–941, 2000  相似文献   

10.
The crystallization kinetics of an unfractionated sample of isotactic polybutene-1 have been studied from the melt and from dilute solutions in amyl acetate by the dilatometric method. The kinetics of bulk crystallization followed the Avrami equation for most of the transformation with a deviation towards the end of the crystallization process. The Avrami exponent is found to be temperature dependent with the value of n ≈ 3 at high undercooling (indicating a homogeneous nucleation process) and n ≈ 4 at lower undercooling (indicating a heterogeneous nucleation process). The temperature coefficients of the rate constants indicate a nucleation controlled process of crystallization.  相似文献   

11.
A series of low‐ether‐content polyether–polyester block copolymers with amide linkages were synthesized. Their crystallization kinetics and mechanisms were investigated. The crystallization kinetics were analyzed via Avrami treatment; an average value of 1.8 for the Avrami index was thus obtained. Athermal nucleation was evidenced by observations of a linear boundary between impinged spherulites under polarized light microscopy and transmission electron microscopy. The development of spherulitic morphology with a hedgehog texture was attributed to the mechanism of lamellar branching. On the basis of the morphological observations and Avrami analysis, a crystallization mechanism through a heterogeneous nucleation process with homogeneous lamellar branching was proposed. No regime transition was found for polyether–polyesters in the examined temperature ranges, and the crystallization was identified as regime I kinetics on the basis of a Lauritzen Z test. The copolymerization of poly(ether amide)s with polyesters led to a significant suppression of the crystallization rate of polyester crystals. The suppression was explained as the result of a dilution effect in nucleation combined with an increasing nucleation barrier. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2469–2480, 2001  相似文献   

12.
The melt-crystallization and isothermal melt-crystallization kinetics of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends (PET/PTT) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. Although PET and PTT in the binary blends are miscible at amorphous state, they will crystallize individually when cooled from the melt. In the DSC measurements, PET component with higher supercooling degree will crystallize first, and then the crystallite of PET will be the nucleating agent for PTT, which induce the crystallization of PTT at higher temperature. On the other hand, in both blends of PET80/PTT20 and PET60/PTT40, the PET component will crystallize at higher temperature with faster crystallization rate due to the dilute effect of PTT. So the commingled minor addition of one component to another helps to improve the crystallization of the blends. For blends of PET20/PTT80 and PET40/PTT60, isothermal crystallization kinetics evaluated in terms of the Avrami equation suggest different crystallization mechanisms occurred. The more PET content in blends, the fast crystallization rate is. The Avrami exponent, n = 3, suggests a three-dimensional growth of the crystals in both blends, which is further demonstrated by the spherulites formed in all blends. The crystalline blends show multiple-melting peaks during heating process.  相似文献   

13.
The crystallization kinetics of a high molecular weight fraction of linear polyethylene was studied in dilute solutions of p-xylene, n-hexadecane, and decalin by dilatometric methods. For all solvents and temperatures, the experimental isotherms could be quantitatively described by the Avrami formulation for the complete transformation. This result is unique in the realm of polymer crystallization, since marked deviations from this theory are usually observed in more concentrated systems. The Avrami exponent is found to be n = 4 in all cases. The temperature coefficients of the rate constants are indicative of a nucleation controlled process. The data fit either a two-dimensional or three-dimensional nucleation mode, and a discrimination can not be made between these two cases. The interfacial free energies are found to be independent of the solvent medium. It is also shown that, irrespective of the type of nucleation control governing the kinetics, the same type governs the crystallite thickness of the lamella-like crystals that are formed.  相似文献   

14.
The nonisothermal crystallization kinetics of poly(vinylidene fluoride) (PVDF) in PVDF/MMT, SiO2, CaCO3, or PTFE composites was investigated through differential scanning calorimetry measurements. The enhanced nucleation of PVDF in its nanocomposites with four types of nanoparticle, and their impact on the crystallization kinetics and melting behaviors were discussed. The modified Avrami method and combined Ozawa–Avrami approaches successfully described the primary crystallization of PVDF in nanocomposite samples under the nonisothermal crystallization process. The activation energy was determined according to the Friedman method and it was quite fit with the results of the analysis according to the modified Avrami model and a combined Ozawa–Avrami model.  相似文献   

15.
间同立构 1 ,2 -聚丁二烯自 1 95 5年问世以来 ,引起人们的广泛关注 ,但其形态结构方面的研究却很少报道 [1] .原因是间同立构 1 ,2 -聚丁二烯分子侧链含有大量双键 ,在较高温度下 ( >1 5 0℃ )很容易产生热交联 ,严重影响该聚合物的结晶行为 .我们曾报道了结晶性间同立构 1 ,2 -聚丁二烯的合成和溶液浇铸膜的板条状结构以及单晶结构 [2 ,3] .本文研究了间同立构 1 ,2 -聚丁二烯的自成核过程、结晶行为和形态结构 .自成核 ( Self- seeding nu-cleation)是指聚合物自身的微小晶粒作为晶核而诱导结晶生长的一种成核方式 ,它具有很高的成核效…  相似文献   

16.
Effects of carbon nanotubes (CNT) on the isothermal crystallization kinetics of poly(L ‐lactic acid) (PLLA) were quantitatively investigated using the Avrami equation and the secondary nucleation theory of Lauritzen and Hoffman. CNT via grafting modification with PLLA could well disperse in the PLLA matrix and give significantly enhanced crystallization rate and crystallinity of PLLA as analyzed by differential scanning calorimetry and polarized optical microscopy. Analysis of isothermal crystallization kinetics using the Avrami equation demonstrated that CNT significantly enhanced the bulk crystallization of PLLA. Analysis of spherulite growth kinetics using the secondary nucleation theory of Lauritzen and Hoffman found that CNT could expand the temperature range of the crystallization regime III of PLLA. Values of the nucleation constant (Kg) in crystallization regimes III and II of PLLA both increased with increasing CNT contents. The Kg III/Kg II ratios were found to be close to the theoretical value 2 but were not clearly found to depend on the CNT contents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 983–989, 2010  相似文献   

17.
The crystallization kinetics of polypropylene and poly (butyl methacrylate-co-hydroxyethyl methacrylate) blend was investigated with differential scanning calorimetry. The isothermal crystallization analysis based on the Avrami theory indicated a heterogeneous nucleating effect from the copolymer. A systematic study of the nonisothermal crystallization kinetics was undertaken using the Avrami equation and its later modifications by Ozawa, Mo, and Zhang. The results demonstrated that the linear relationship failed in the different cooling rates because the Avrami method did not take into account that the crystallization temperature was lowered continuously. The Ozawa and Mo methods could be successful in describing the overall nonisothermal process of polypropylene and the blend. In addition, the nonisothermal crystallization energy values were estimated by the Kissinger and Freidman models. There are two mutually opposite effects on the crystallization behavior of the blend: nucleation ability and growth retardation.  相似文献   

18.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

19.
MELTING CRYSTALLIZATION BEHAVIOR OF NYLON 66   总被引:2,自引:0,他引:2  
Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differentialscanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, tofit the primary stage of isothermal and nonisothermal crystallizations of nylon 66, In the isothermal crystallization process,mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determinedfrom the Lauritzen-Hoffman treatment are σ= 9.77 erg/cm~2 and σ_e= 155.48 erg/cm~2, respectively; and the work of chainfolding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo methodcombined with the Avrami and Ozawa equations. The average Avrami exponent n was determined to be 3.45, Theactivation energies (ΔE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal andnonisothermal crystallization processes by the Arrhenius and the Kissinger methods.  相似文献   

20.
We have studied the nonisothermal and isothermal crystallization kinetics of an aromatic thermotropic liquid crystalline polyimide synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy) cumyl] benzene (BACB) by means of differential scanning calorimetry (DSC). Polarized light microscopy (PLM) and wide-angle X-ray diffraction (WAXD) results confirm that this polyimide exhibits a smectic texture. Nonisothermal crystallization showed two strong and one weak exothermic peaks during cooling. The phase transition from isotropic melt to liquid crystalline state is extremely fast which completes in several seconds. The mesophase transition has a small Avrami parameter, n, of approximate 1. The isothermal crystallization of 253–258°C has been examined. The average value n is about 2.6 and the temperature-dependent rate constant k changes about two orders of magnitude in the crystallization temperature range of 6°C. The slope of ln k versus 1/(TcΔT) is calculated to be −2.4 × 105, which suggests nucleation control, via primary and/or secondary nucleation for the crystallization process. During the annealing process, a new phase (slow transition) is induced, which grows gradually with annealing time. At lower annealing temperatures (220–230°C), the slow transition process seems not to be influenced by the crystals formed during cooling process and its Avrami parameter n is ca. 0.3–0.4. However, the slow transition was hindered by the crystals formed during cooling process when annealed at higher temperature (230–240°C). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1679–1694, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号