首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Molecular weight determination by gel chromatography and analytical ultracentrifugation revealed that C-phycoerythrin from Pseudanabaena W 1173 exists as the monomer ∝βat a concentration up to 7μM and as the dimer (∝β)2 at 40 μM. The purified subunits were monomeric species ∝ or β , respectively at 20 μM. Native monomeric C-phycoerythrin was compared with the renatured subunits in a number of spectral properties: absorption spectroscopy including determination of molar extinction coefficients, fluorescence emission and excitation at 293 and 4 K, and fluorescence polarization. Whereas spectra of denatured subunits and denatured C-phycoesythrin are identical, substantial changes occurred upon renaturation. Linear superposition of the absorption spectra of renatured subunits results in a curve identical with the absorption of native monomeric C-phycoerythrin.
The following conclusions were drawn: (a) Chromophore conformation is identical in renatured subunits and in native αβ monomer of C-phycoerythrin. (b) In C-phycoerythrin there are two fluorescing chromophores, degenerate in energy, one in the α - and the other in the β -subunit and three sensitizing chromophores which differ in their energies and spectral shapes, (c) The energy transfer in C-phycoerythrin occurs not only within but also between the subunits. (d) A weak fluorescence from sensitizing chromophores observed at low temperature (4 K) in the α -subunit and in C-phycoerythrin shows the limitations of the concept of sensitizing chromophores.
C-PE, C-phycoerythrin; P, degree of polarization; R, degree of anisotropy; SDS, sodium dode-cyl sulfate; s20, sedimentation coefficient  相似文献   

2.
Abstract— The extinction coefficient εT, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, Δ D 0T, under demonstrably linear conditions where incident excitation energy, E 0, and ground state absorbance, A 0, are both extrapolated to zero. The result, 7220 ± 320 M -1 cm-1 at 530 nm, validates and slightly corrects many measurements relative to benzophenone of triplet extinction coefficients made by the energy transfer technique, and of triplet yields obtained by the comparative method.
As E 0 and A 0 both decrease, Δ D 0T becomes proportional to their product. In this situation, the ratio R = (1/ A 0)(dΔ D 0T/d E 0) = (εT - εGT. Measurements of R , referred to benzophenone, give (εT - εGT for any substance, without necessity for absolute energy calibration.
Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (εT - εG at 470 nm = 7.3 × 104 M -1 cm-1) give φT= 0.83 ± 0.04.  相似文献   

3.
Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184 , 257–277 (1985) and ibid. , 188 , 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's'(sensitizer), β84 ='f (fluorescer) and α84 ='m'(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides.  相似文献   

4.
Abstract— The triplet absorption spectra, lifetimes, extinction coefficients, eTT, and intersystem crossing quantum yields to the lowest triplet T1, øT1, of thymidine, thymidine monophosphate, uridine and uridine monophosphate, have been determined in various solvents at 300 K.
The effect of H-bonding on øT1, of these nucleosides and nucleotides and also of uracil has been determined and discussed. This effect allows, an ordering of l,3 n, π* and 1,3 π, π* states in protic and aprotic solvents.  相似文献   

5.
Abstract— By idealizing the design of a typical spectrofluorimeter that measures fluorescence from dilute solutions, we are able to derive an equation that predicts the dependence of the observable amplitude on the concentration of the solute and on several instrumental parameters. The result of the derivation, the fluorescence function, is used together with measurements of rhodamine B fluorescence and colloidal silica scattering to calibrate a spectrofluorimeter.
The fluorescence function and the calibration data are used to determine the absolute fluorescence quantum yield of quinine sulfate in 0–1 N H2 So4. The results, Ø250=0.582 with excitation at 250 mμ, adn Ø350=0.577 with excitation at 350mμ. agree well with the previous evaluation of Melhuish, Ø345=0.546.  相似文献   

6.
Abstract— Absorption and fluorescence spectra of 5'-deoxypyridoxal (DPL) in various pure solvents and mixtures were recorded both at room temperature and over the range10–65°C. The areas under the absorption bands were analyzed to obtain the mole fraction (fN, fz) of two tautomers (the zwitterionic, Z, and neutral, N, forms) in the ground state. The following spectral parameters were determined from the fluorescence spectra: Stokes shift (Δ v ), fluorescence quantum yield of the neutral form (QN), fluorescence ratio of the neutral to the zwitterionic form (øNZ) and the rate constant of tautomerization ( k 1) from Z to N in the excited state. Some of these parameters (fN, Δ v , QN, k 1) were found to depend on the proton donor character of the solvent, whereas others (øNZ) depended on its dipole moment. Thus, the absorption and fluorescence spectra of DPL allow one to obtain information on the polarity and the concentration of –OH groups on its environment.  相似文献   

7.
ON THE MECHANISM OF QUENCHING OF SINGLET OXYGEN IN SOLUTION   总被引:2,自引:0,他引:2  
Abstract— Bimolecular rate constants for the quenching of singlet oxygen O*2(1Δg), have been obtained for several transition-metal complexes and for β-carotene. Laser photolysis experiments of aerated solutions, in which triplet anthracene is produced and quenched by oxygen, yielding singlet oxygen which then sensitizes absorption due to triplet carotene, firmly establishes diffusion-controlled energy transfer from singlet oxygen as the quenching mechanism in the case of β-carotene. The efficient quenching of singlet oxygen by two trans-planar Schiff-base Ni(II) complexes, which have low-lying triplet ligand-field states, most probably also occurs as a result of electronic energy transfer, since an analogous Pd(II) complex and ferrocene, which both have lowest-lying triplet states at higher energies than the O*2(1Δg), state, quench much less effectively.  相似文献   

8.
Abstract— The accumulation of (J-carotene in the ph/ph + y diploid strain of the smut fungus Ustilago violacea was associated with reduced killing and lower levels of induced mitotic recombination compared to the β-carotene lacking ph/ph+ w strain in response to both incandescent photosensitization and treatment with H202. The ph/ph+ y strain was only slightly more resistant to killing by exogenous toluidine blue (TB) photosensitization. The ph/ph+ y strain exhibited significantly greater levels of survival when exposed to incandescent radiation and 1.5 μ.M TB for 15 min, as well as 3.0. 0.3, 0.03, 0.003% H202 in the dark. The ph/ph+ y strain also exhibited lower levels of mitotic recombination after endogenous TB photosensitization and the latter two H202 treatments. Similar survival results were obtained for the carotene accumulating haploid strain l.C2y and the carotene lacking haploid strain l.C2iv in response to H202 exposure.  相似文献   

9.
Abstract— The laser flash photolysis method has been used to determine the bimolecular rate constants for the reaction between O2(1Δ9) and several lipid-soluble and water-soluble substrates. Values for lipid-soluble substrates have been obtained using aqueous dispersions of surfactants above the critical micelle concentration with 1,3 diphenylisobenzofuran as monitor of singlet oxygen. Under these conditions the hydrophobic substances are solubilized by the micellar phase. For substrates which are water-soluble, 9,10-anthracene dipropionic acid disodium salt was used as singlet oxygen monitor. For several substances, the values obtained are comparable to the values found in homogeneous nonaqueous solutions. In cases where significant differences have been found these have been rationalized according to the individual case. The only major unexpected result concerned β-carotene which, in micellar dispersion, failed to react at all with O2(1Δ9) This may be due to multi-molecular aggregations occurring in the polar medium. The work described herein shows clearly that, under appropriate conditions, singlet oxygen kinetics can be effectively followed in aqueous solutions by time resolved methods. The indiscriminate use of β-carotene as a quencher of O2(1Δ9)in mainly aqueous media is questioned.  相似文献   

10.
The core linker polypeptide Lc8.9 was isolated from Mastigocladus laminosus and purified on a preparative scale. A method for the reconstitution of allophycocyanin (AP)—linker complexes from isolated polypeptides was developed. The complex (αAPAP)3 Lc8.9 was reconstituted and compared to (αAPβAP) and (αAPβAP)3 by sucrose density gradient ultracentrifugation, absorption, fluorescence emission and circular dichroism spectroscopy. Differences in the spectra of reconstituted and of directly isolated AP complexes are discussed.  相似文献   

11.
Abstract— Upon e--pulse irradiation in nonprotic solvents, all- trans retinol (ROH) and retinylmethyl ether (ROMe) form transient species (τ= 0.5–7μs, λmax=575–590 nm) identifiable as radical anions. Similar species are also formed upon laser pulse photoexcitation of these retinyl derivatives in the presence of N,N-dimethylaniline in acetonitrile. In contrast, electron transfer or attachment to all- trans retinyl acetate (ROAc) and palmitate (ROPa) results in 'instantaneous' loss of carboxylate anions from electron adducts giving the retinylmethyl radical (R-, λmax= 395 nm, τk > 100 μ,s); the radical anions in these cases are too short-lived to be detected by nanosecond pulse radiolysis. The lifetimes of radical anions of ROH and ROMe are very sensitive to water and alcohols (e.g. kq = 107 M -1 s-1 with methanol as quencher for ROH- in tetrahydrofuran). Based on these findings, the spectral dissimilarity of the one-electron reduction products from ROH and ROAc in alcohols and aqueous micelles becomes explainable in terms of fast formation of protonated radical anions (RH(OH), τ1/2, > 100 μs, λmax=370–375 nm) in the case of ROH and of retinylmethyl radical via loss of AcO- from radical anion in the case of ROAc. In tetrahydrofuran, the complexation of ROH- with cations such as Na+ and Bu4N+ affects the relative importance of its major decay modes, namely, protonation and dehydroxylation, the latter process being significantly enhanced by the presence of Na+.  相似文献   

12.
Abstract— The photogeneration of singlet oxygen (1O2) from thylakoids and the chromophores involved as endogenous sensitizers were investigated using chloroplasts and thylakoids isolated from spinach. The blue light-induced inhibition kinetics of photosynthetic electron transport and that of CTvCF, ATPase were also studied. The spectral dependence of the generation of 1O2 from thylakoid membranes, measured by the imidazole plus RNO method, clearly demonstrated that the Fe-S centers play an important role in 1O2 generation, acting as sensitizers in thylakoids. The photoinhibition of the electron transport in isolated chloroplasts was strikingly depressed by a lipid-soluble '02 quencher and enhanced by deuterium oxide substitution, indicating that the inhibition processes are mainly mediated by 1O2 which is produced via photodynamic activation. The involvement of chloroplast cytochromes in the production of 1O2 was deduced from the action spectrum for the photodynamic inhibition of the electron carrier chain. The results obtained from the kinetic studies appear consistent with the involvement of some components such as the Fe-S centers and cytochrome chromophores of the carrier chain in the generation of 1O2.  相似文献   

13.
QUENCHING OF CHLOROPHYLL FLUORESCENCE BY NITROBENZENE   总被引:1,自引:0,他引:1  
Abstract—Nitrobenzene quenching of chlorophyll fluorescence in ethanol has been investigated. Steady state relative quantum yields have been measured and fluorescence decay rates were determined using both nanosecond photon counting and picosecond pulses from a mode-locked Nd3+ glass laser.
The fluorescence decay is described by
1( t )= I 0 exp (- t/τ−At1/2 )
the form predicted for decay governed by the kinetics of the continuum model of diffusion controlled reactions. From the parameters of the fluorescence decay, the encounter distance is 5–7 A° the mutual diffusion coefficient is 0.62 × 10--5 cm2s-1± 12%.
Some of the fluorescence quenching is also attributed to static quenching by a nitrobenzene-chlorophyll, ground-state complex. The equilibrium constant for formation of this ground-state complex was determined to be 4.1 M -1. The combined dynamic and static quenching model allows calculation of quantum yields of fluorescence in good agreement with the experimentally determined quantum yields.  相似文献   

14.
Abstract. The data of Kung and DeVault (1978) showing high-order fluorescence from chromatophores of photosynthetic bacteria are analyzed in relation to other data on first-order fluorescence of photosynthetic systems, particularly that of Monger and Parson (1977). The wavelengths of emission observed (down to 445 nm) require energy equivalent to two lowest singlet-excited states. The dependence on excitation intensity is best explained by any of the following third-order processes: (a) 3 S 1→3 S 0; (b) 2 S 1+ T , → 2 S 0+ T 1; (c) S 1+ 2 T 1→ 3 S 0. However, (c) is ruled out because it predicts heavy T 1-destruction which is not observed. Contribution from the second order process: 2 S 1→ S 0 is probable, but even the data of Monger and Parson show that it is insufficient by itself. Two-photon absorption: S 0+ hv 1→ S 1; S 1+ hv 1→ S n; S n S 0+ hv 2 could also account for the high-order fluorescence and its dependence on excitation intensity. [ S 0, S 1 S n are ground, first excited and a higher excited singlet states, respectively, of antenna bacteriochlorophyll, T t is the lowest triplet state, c/v , is the exciting wavelength (694 or 868 nm) and c/v 2 the wavelength of the high-order fluorescence (445, 535. or 600 nm), where c = velocity of light.] Maximum values are estimated for some of the rate constants.  相似文献   

15.
Abstract— Using isolated chloroplasts and techniques as described by Joliot and Joliot[6] we studied the evolution of O2 in weak light and light flashes to analyze the interactions between light induced O2 precursors and their decay in darkness. The following observations and conclusions are reported: 1. Light flashes always produce the same number of oxidizing equivalents either as precursor or as O2. 2. The number of unstable precursor equivalents present during steady state photosynthesis is ∼ 1.2 per photochemical trapping center. 3. The cooperation of the four photochemically formed oxidizing equivalents occurs essentially in the individual reaction centers and the final O2 evolution step is a one quantum process. 4. The data are compatible with a linear four step mechanism in which a trapping center, or an associated catalyst, ( S ) successively accumulates four + charges. The S 4+ state produces O2 and returns to the ground state S 0. 5. Besides S 0 also the first oxidized state S + is stable in the dark, the two higher states, S2+ and S3+ are not. 6. The relaxation times of some of the photooxidation steps were estimated. The fastest reaction, presumably S *1← S 2, has a (first) half time ≤ 200 μsec. The S *2 state and probably also the S *0 state are processed somewhat more slowly (˜ 300–400 μsec).  相似文献   

16.
Abstract— The relative reactivity of singlet molecular oxygen, 02(1Δg), α-,β-,Γ-and δ with -tocopherol (vitamin E) was investigated using microwave discharge generation as a uniquely clean source of singlet oxygen and using a hydrocarbon solvent to approximate the membrane environment. The relative efficiencies of the tocopherols for O2(1Δg) were found to decrease in the order: D-α-tocopherol > D-β-tocopheroI > D–Γ-tocopherol > D-δ-tocopherol. The reaction products in all cases were found to be mixtures of quinone and quinone epoxides apparently resulting from decomposition of the primary product, the hydroperoxydienone.  相似文献   

17.
Triplet formation quantum yields (Φτ) of psoralen in a set of 17 pure solvents ranging from n -hexane to water and in dioxane: water mixtures were obtained by nanosecond laser flash photolysis. The triplet yield increases with solvent polarity. The extremum values are 0.009 and 0.545 in n -hexane and water, respectively. Good correlations of the experimental Φτ values with empirical "polarity" scales (Dimroth/Reichardt's ET [30], Kamlet/Taft's solva-tochromic parameters β, and α, and Swains acity/basity AS/BS) were obtained: Ln(φT-1 - 1) = 8.86 - 0.143ET(30) Ln(φT-1 - 1) = 4.40 - 2.34τ - 1.70α Ln(φT-1 - 1) = 4.65 - 3.72As - 1.12Bs The results are discussed in terms of the sensitivity of psoralen triplet quantum yield to solvent polarity and hydrogen-bonding abilities.  相似文献   

18.
Abstract— We measured 6β-cholesterol hydroperoxide (6β-CHP), a specific singlet-oxygen (O2(δg)) product, during irradiation of unilamellar dimyristoyl 1-α-phosphatidylcholine liposomes containing cholesterol and zinc phthalocyanine (ZnPC). The effects of liposome size, the hydrophobic (O2(1δg)) quencher, β-carotene, and hydrophilic O2(1δg) quenchers upon the amount of 6β-CHP formed were determined and interpreted in terms of a one dimensional model of 2(1δg) quenching and diffusion. The model correctly predicted (1) that the amount of 6β-CHP was increased with increasing liposome size, (2) that P-carotene was more effective at reducing 6β-CHP formation in 400 nm diameter liposomes than 100 nm diameter liposomes and (3) that the hydrophilic quencher, water, was also more effective in large liposomes than in small liposomes.
The hydrophobic quencher, β-carotene, was more effective at reducing the formation of 6β-CHP than at reducing the 1270 nm O2(1δg) emission. This difference was found to be due to the size distribution present in the liposome preparations because the difference between the 6β-CHP data and the 1270 nm emission data was much smaller in liposome preparations with a narrow size distribution. When a significant size distribution was present, the 6β-CHP data were weighted more heavily with large-diameter liposomes, while the 1270 nm emission data were weighted more heavily with small-diameter liposomes.  相似文献   

19.
Abstract— The absorption and fluorescence spectra of indole-4-carboxylic acid in various solvents have indicated that the -COOH group is more planar with respect to the indole ring in the first excited singlet state (S1) than in the ground (S0) state. Relatively large Stokes' shifts indicate that polarisability and dipole moment of the molecule are increased predominantly upon excitation. Prototropic reactions in the S0 and S1 states are the same. The -COO- and -COOH+2 groups are not coplanar in the S0, but coplanar in the S1 state. pH-dependent fluorescence spectra have revealed that both protonation and deprotonation of the -COOH group increase the basicity of the molecule upon excitation.  相似文献   

20.
THERMODYNAMICS OF THE PRIMARY REACTIONS OF PHOTOSYNTHESIS   总被引:1,自引:0,他引:1  
Abstract. It appears to be widely believed that fundamental thermodynamic limitations prevent the products of the primary electron transfer reactions of photosynthesis from exceeding the reactants in energy by more than about 0.7 hv 0 where v 0 is the frequency of the lowest energy absorption band of the reaction center. Specifically, in photosynthetic bacteria, where hv 0 1.34 eV, it is often said that the midpoint redox potentials of the primary electron donor and acceptor cannot differ by more than about 0.9 eV. This is incorrect. A simple expression is developed for δμ, the increase in the partial molecular free energy of an absorber under illumination. The magnitude of δμ gives one no information about the nature of the photochemical reactions that can result from excitation of the absorber. It puts no limits on the midpoint redox potentials of the reactants. However, knowing δμ does allow one to calculate the concentrations of the products if the system comes to equilibrium during illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号