首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetization measurements have been carried out on the intermetallic compound TbNiAl in applied fields up to 120 kOe. Temperature dependence of magnetization under zero-field-cooled and field-cooled conditions shows thermomagnetic irreversibility, which is attributed to magnetic frustration. With the increase of field, the irreversibility decreases and vanishes completely at high fields. Magnetocaloric effect has been calculated in terms of isothermal magnetic entropy change using magnetization isotherms obtained at various temperatures. The maximum entropy change is 13.8 J kg−1 K−1 near the ordering temperature for a field change of 50 kOe. The refrigerant capacity is found to be 494 J kg−1 for the same field change and for a temperature difference of 52 K between the cold and the hot sinks.  相似文献   

2.
In this work we present a model to describe the magnetocaloric effect (MCE) in ferrimagnetic arrangements. Our model takes into account the magnetoelastic interactions in the two coupled magnetic sublattices, which can lead to the onset of the first order magnetic phase transition and the giant-MCE. Several profiles of the MCE, such as: the inverse- and giant-MCE were systematically studied. Application of the model to the ferromagnetic compounds GdAl2, Gd5(Ge1.72Si2.28), Gd5(Ge2Si2), and to the ferrimagnetic compound Y3Fe5O12 was performed, showing a good agreement with the experimental data.  相似文献   

3.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

4.
In this work, we calculate the magnetocaloric effect in the compounds Gd(Zn1−xCdx). We use a model Hamiltonian of interacting spins in which the indirect exchange interaction parameter between localized spins was calculated as a function of Cd concentration. The calculated isothermal entropy changes and the adiabatic temperature changes upon magnetic field variations are in good agreement with the available experimental data.  相似文献   

5.
The effects of Fe substitution on the structure, magnetic properties, magnetocaloric effect and positive magnetoresistance (MR) effect in antipervoskite compounds SnCMn3−xFex (x=0.05-0.20) have been investigated systematically. Partial substitution of Fe for Mn leads to the monotonic reduction in both the Curie temperature TC and saturated magnetization (MS). It can be attributed to the reduction of electronic density of state at the Fermi energy by Fe-doping. The maximum values of magnetic entropy change (−ΔSM) and positive MR gradually decrease as x increases, due to the broadening of magnetic phase transition. The refrigerant capacity increases initially with x≤0.05, then decreases gradually as x increases further, which is suggested to originate from the competition between the decreasing −ΔSM and broadening temperature span. Our result indicates that the chemical doping on Mn site is an effective method for manipulating the properties of antiperovskite compounds AXMn3.  相似文献   

6.
The magnetocaloric effect (MCE) in the DyNi2, DyAl2 and Tb1−nGdnAl2 (n=0, 0.4, 0.6) was theoretically investigated in this work. The DyNi2 and DyAl2 compounds are described considering a model Hamiltonian which includes the crystalline electrical field anisotropy. The anisotropic MCE was calculated changing the magnetic field direction from 〈1 1 1〉 to 〈0 0 1〉 in DyNi2 and from 〈1 0 0〉 to 〈0 1 1〉 in DyAl2. The influence of the second- and first-order spin-reorientation phase transitions on the MCE that occurs in these systems is discussed. For the calculations of the MCE thermodynamic quantities in the Tb1−nGdnAl2 systems we take into account a two sites magnetic model, and good agreement with the available experimental data was obtained.  相似文献   

7.
The Mn-based Heusler alloys encompass a rich collection of useful materials from highly spin-polarized systems to shape memory alloys to magnetocaloric materials. In this work we have summarized our studies of magnetostructural transitions from paramagnetic austenite to ferromagnetic martesite phases at TMC in Ni2MnGa-based alloys (Ni2Mn0.75Cu0.25-xCoxGa, Ni2Mn0.70Cu0.30Ga0.95Ge0.05, Ni2Mn1-xCuxGa, Ni2+xMn1-xGa, and Ni2Mn0.75-xCuxGa), and martensitic transitions from the ferromagnetic austenite to the martesite state in off-stoichiometric Ni-Mn-(In/Sb) Heusler alloys. The phase transition temperatures and respective magnetic entropy changes (ΔS) depend on composition in these systems and have been determined from magnetization measurements in the temperature interval 5-400 K, and in magnetic fields up to 5 T. It is shown that, depending on the composition and doping scheme the “giant” ΔS=40-60 J/(kgK) (for a field change of 5 T) can be observed in the temperature range (300-360 K) for the Ga-based alloys. The interplay between or coupling of the various transitions in Ni2Mn(Mn,X) systems with X=Sb and In leads to exchange bias effects, giant magnetoresistance, and both inverse and “normal” magnetocaloric effects.  相似文献   

8.
Itinerant electron metamagnetism in Dy(Co1-xSix)2 compounds was studied in the light of a recent theoretical model based on magnetovolume effect and spin fluctuations. The nature of the magnetic transition in these compounds was analyzed within the framework of this model. The magnetocaloric effect in these compounds has been calculated and correlated with the strength of itinerant electron metamagnetism. The domain wall pinning effect was found to be dominant at low temperatures.  相似文献   

9.
The magnetocaloric effect of the rare-earth intermetallic compound DyCu2 is explored through magnetization measurements. DyCu2 is paramagnetic at the room temperature but becomes antiferromagnetic below 27 K (Neel temperature). Strong temperature and field dependence of magnetization in DyCu2 at and around the Neel temperature lead to a large magnetocaloric effect. An appreciable magnetocaloric effect persists well above the Neel temperature probably because of the presence of short-range ferromagnetic correlations in the paramagnetic state of DyCu2. This along with the absence of magnetic hysteresis lead to a large effective refrigerant capacity of 194 J/kg below 44 K, which makes the material important as a potential magnetic refrigerant for the cryogenic liquefier cycles.  相似文献   

10.
80 Pd20 alloy below the Curie temperature TC(l)=1257 K of the liquid state. The magnetization of the undercooled liquid sample has been measured as a function of temperature using a modified Faraday balance. Below TC(l), the magnetization of the liquid metal shows a plateau in the weak external field of μ0Hz=5.6 mT. The effect is comparable to the behaviour of the corresponding solid phase, indicating the onset of spontaneous magnetization with ferromagnetic domains. TC(l) is about 20 K lower than the Curie temperature of the solid phase TC(s). Received: 24 February 1997/Accepted: 16 May 1997  相似文献   

11.
The crystal structure and magnetocaloric effect of Gd5SixSn4−x   (with x=2.4x=2.4, 2.6 and 2.8) alloys were studied by means of X-ray power diffraction (XRD) and magnetic measurements. From the XRD results, these alloys adopt a Gd5Si4-type structure for x=2.8x=2.8, Gd5Si4-type and Gd5Si2Ge2-type mixed structures for x=2.4x=2.4 and 2.6, while some minor phases can also be found. The Curie temperatures of the Gd5SixSn4−x increases gradually when x increases from 276 K for x=2.4x=2.4, to 301.5 K for x=2.8x=2.8. Magnetic entropy changes of these alloys at a magnetic field change of 0–1.8 T are 1.88, 2.26 and 1.69 J/kg K for x=2.4x=2.4, 2.6 and 2.8, respectively. The temperature-dependent XRD analysis shows that there is no crystallographic transition for these alloys, which can explain their low magnetic entropy changes.  相似文献   

12.
A series of R2Fe17 (R=Sm, Gd, Tb, Dy, Er) have been synthesized. The magnetocaloric effect (MCE) of these compounds has been investigated by means of magnetic measurements in the vicinity of their Curie temperature. The Curie temperature of Er2Fe17 is 294 K. The maximum magnetic entropy change of Er2Fe17 under 5 T magnetic field is ∼3.68 J/kg K. In the R2Fe17 (R=Sm, Gd, Tb, Dy, Er) system, the maximum magnetic entropy change under 1.5 T magnetic field is 1.72, 0.89, 1.32, 1.59, 1.68 J/kg K corresponding to their Curie temperature (400, 472, 415, 364, 294 K), respectively.  相似文献   

13.
For the Nd0.1La0.9Fe11.5Al1.5 compound, the fine structure of the magnetic transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) states has been studied carefully by means of magnetization (M) and heat capacity (Cp) measurements. Although a single phase with the cubic NaZn13-type structure (Fm3c) has been proved by the room temperature X-ray diffraction pattern, the phase transition has been clearly found to be a stepwise process in M(T) and Cp(T) curves under proper fields. Due to the strong competition between the FM order and AFM order, the characteristic is especially evident under low fields, weakens gradually with the increasing applied field and finally vanishes when the field is higher than 2 T. This multi-step magnetic transition results from the inhomogeneity of the sample, probably due to the inhomogeneous distribution of Nd atoms.  相似文献   

14.
We have studied anomalous peaks observed in magnetocaloric −ΔS(T) curves for systems that undergo first-order magnetostructural transitions. The origin of those peaks, which can exceed the conventional magnetic limit, R ln(2J+1), is discussed on thermodynamic bases by introducing an additional-exchange contribution (due to exchange constant variation arising from magnetostructural transition). We also applied a semiphenomenological model to include this additional-exchange contribution in Gd5Si2Ge2- and MnAs-based systems, obtaining excellent results for the observed magnetocaloric effect.  相似文献   

15.
In this study, magnetic and magnetocaloric properties of Pr0.68Ca0.32−xSrxMnO3 (x=0, 0.1, 0.18, 0.26 and 0.32) compounds were investigated. X-ray results indicated that all the samples have a single phase of orthorhombic symmetry. The orthorhombic unit cell parameters increase with the increase in Sr content. Large negative magnetic entropy changes (−26.2 J/kg K at 38 K and 5 T for x=0 and −6.5 J/kg K at 83 K and 6 T for x=0.1) were attributed to ultrasharp metamagnetic transitions. The peak value of ΔSm decreased from −4.1 J/kg K for x=0.18 sample to −2.4 J/kg K for x=0.32 at 1 T magnetic field.  相似文献   

16.
Magneto-structural correlations in Pr0.15Gd0.85Mn2Ge2 have been studied by synchrotron diffraction in the temperature range between 11 and 300 K. This compound crystallizes in the ThCr2Si2-type structure (space group ). The unit cell parameters a and c were determined by Rietveld refinements as a function of temperature. Anomalies in the temperature dependence of the unit cell parameters a and c, the c/a ratio and the unit cell volume V at about 240 and 140 K, which is close to the magnetic phase transition temperatures, indicate a pronounced magneto-structural correlation. Spontaneous volume change and linear magnetostrictions are derived as a function of temperature.  相似文献   

17.
The novel RCo5Ga7 (R=Y, Tb, Dy, Ho and Er) intermetallic compounds have been synthesized, and their crystallographic and magnetic properties have been studied using X-ray diffraction and magnetic measurement. RCo5Ga7 crystallizes in an orthorhombic structure with ScFe6Ga6 type. The space group is Immm, and Z=2. According to the structural refinement result, the 2a, 4e, 4f, 4g, 4h, and 8k crystal positions are occupied by 2R, 4GaI, 4(GaII, CoI), 4GaIII, 4(GaIV,CoII), and 8(CoIII,GaV), respectively. The RCo5Ga7 intermetallic compound can be stabilized in the range of the radius ratio of RRe/R(Co,Ga)<1.36. The RCo5Ga7 compound exhibits a paramagnetic behavior. The magnetization at 5 K ranges from 28.93 to 40.62 emu/g.  相似文献   

18.
The La1−xCexMn2Si2 compounds (x=0.35 and 0.45) exhibit an antiferromagnetic-ferromagnetic transition caused by the changes in distance between Mn atoms due to temperature changes. A field-induced transition from antiferromagnetic state to ferromagnetic state at a critical field, which decreases with increase in temperature, can also be induced by applying a magnetic field. In this paper our aim is to study the magnetization and magnetocaloric effect, close to transition temperatures. Our subsidiary aim is to examine the temperature dependence of critical field and ferromagnetic fraction of compounds. The variation of magnetocaloric effect with temperature is correlated with the ferromagnetic-antiferromagnetic phase coexistence. Our final aim is to examine the harmony between magnetocaloric effect values calculated both by the Maxwell theory and by the Landau theory.  相似文献   

19.
A thorough understanding of the magnetocaloric properties of existing magnetic refrigerant materials has been an important issue in magnetic refrigeration technology. This paper reviews a new class of magnetocaloric material, that is, the ferromagnetic perovskite manganites (R1−xMxMnO3, where R=La, Nd, Pr and M=Ca, Sr, Ba, etc.). The nature of these materials with respect to their magnetocaloric properties has been analyzed and discussed systematically. A comparison of the magnetocaloric effect of the manganites with other materials is given. The potential manganites are nominated for a variety of large- and small-scale magnetic refrigeration applications in the temperature range of 100–375 K. It is believed that the manganite materials with the superior magnetocaloric properties in addition to cheap materials-processing cost will be the option of future magnetic refrigeration technology.  相似文献   

20.
We present study of the anisotropic magnetocaloric effect in DyNiAl. This compound crystallizes in the hexagonal ZrNiAl-type structure, orders magnetically below and undergoes a further magnetic phase transition at . The Dy-moments are aligned ferromagnetically along the hexagonal c-axis below TC, the additional antiferromagnetic component develops within the basal plane below T1. The magnetocaloric effect was evaluated from the magnetization measurements with field applied along the c-axis and perpendicular to it. Our data reveal a strong anisotropy of the magnetocaloric effect. The large effect occurs for field applied along the c-axis whereas the entropy change is small for the perpendicular field direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号