首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water adsorption on the bare and H-terminated Si(1 0 0) surfaces has been studied by the BML-IRRAS technique. It is found that H-terminated surfaces are much less reactive compared to the bare silicon surfaces. The (1 × 1)-H and (3 × 1)-H surfaces show similar and less reactivity pattern compared to the (2 × 1)-H surface. At higher exposures, the water reaction with coupled monohydride species provides an effective channel for oxygen insertion into the back bonds of dihydride species. It is not attributed to the H–Si–Si–H + H2O → H–S–Si–OH + H2, which could give rise to the characteristic Si–H and Si–OH modes, respectively at 2081 and 921 cm−1. A more suitable reaction mechanism involving a metastable species, H–Si–Si–H + H2O → H2Si  HO–Si–H (metastable) explains well the bending modes of oxygen inserted silicon dihydride species which are observed relatively strongly in the reaction of water with H-terminated Si(1 0 0) surfaces.  相似文献   

2.
Using density functional theory calculations we investigate the function of subsurface boron in determining surface properties of Si(0 0 1). To demonstrate its effect on surface reactivity we compare the behaviors of water adsorption on the clean and B-modified surfaces. We find that subsurface boron brings about a significant change in surface chemical properties by altering charge polarization of Si(0 0 1) locally. As a consequence, water adsorption on the B-modified surface shows a distinctively different feature from that on the clean surface.  相似文献   

3.
Theoretical (HF + DFT) investigations of the adsorption of chlorobenzene (ClPh), 1,2- and 1,4-dichlorobenzene (1,2-diClPh and 1,4-diClPh) on a silicon (1 0 0) surface are reported for the first time, and are compared with one another and with benzene. Binding energies for various structures with the molecules attached on-top and in-between the surface dimer rows are correlated with the STM experimental data. Novel structures with the molecules linking two dimer rows, stabilised by detachment of Cl (or H)-atoms forming Cl-Si (or H-Si) bonds, are described. For 1,4 and 1,2 binding, these linking structures are predicted to attach the phenyl ring parallel or perpendicular to the Si surface, respectively, while preserving its aromaticity. The potential-energy barriers between several different structures are evaluated, and compared with available experimental evidence. For 1,4-diClPh it is shown that the potential-energy barrier for the second Cl transfer is significantly lower than for the first one in contrast to the gas-phase, and comparable to the barrier for lifting the Bz-ring into a vertical position and forming a singly bonded ‘displaced’ structure. The predicted barrier-heights are consistent with the experimentally observed relative occurrence of the on-top, linking, and displaced structures.  相似文献   

4.
Using first-principles total-energy calculations, we have investigated the adsorption and diffusion of Si and Ge adatoms on Ge/Si(0 0 1)-(2 × 8) and Ge/Si(1 0 5)-(1 × 2) surfaces. The dimer vacancy lines on Ge/Si(0 0 1)-(2 × 8) and the alternate SA and rebonded SB steps on Ge/Si(1 0 5)-(1 × 2) are found to strongly influence the adatom kinetics. On Ge/Si(0 0 1)-(2 × 8) surface, the fast diffusion path is found to be along the dimer vacancy line (DVL), reversing the diffusion anisotropy on Si(0 0 1). Also, there exists a repulsion between the adatom and the DVL, which is expected to increase the adatom density and hence island nucleation rate in between the DVLs. On Ge/Si(1 0 5)-(1 × 2) surface, the overall diffusion barrier of Si(Ge) along direction is relative fast with a barrier of ∼0.83(0.61) eV, despite of the large surface undulation. This indicates that the adatoms can rapidly diffuse up and down the (1 0 5)-faceted Ge hut island. The diffusion is also almost isotropic along [0 1 0] and directions.  相似文献   

5.
Yilin Cao 《Surface science》2006,600(19):4572-4583
To provide information about the chemistry of water on Pd surfaces, we performed density functional slab model studies on water adsorption and decomposition at Pd(1 1 1) surface. We located transition states of a series of elementary steps and calculated activation energies and rate constants with and without quantum tunneling effect included. Water was found to weakly bind to the Pd surface. Co-adsorbed species OH and O that are derivable from H2O stabilize the adsorbed water molecules via formation of hydrogen bonds. On the clean surface, the favorable sites are top and bridge for H2O and OH, respectively. Calculated kinetic parameters indicate that dehydrogenation of water is unlikely on the clean regular Pd(1 1 1) surface. The barrier for the hydrogen abstraction of H2O at the OH covered surface is approximately 0.2-0.3 eV higher than the value at the clean surface. Similar trend is computed for the hydroxyl group dissociation at H2O or O covered surfaces. In contrast, the O-H bond breaking of water on oxygen covered Pd surfaces, H2Oad + Oad → 2OHad, is predicted to be likely with a barrier of ∼0.3 eV. The reverse reaction, 2OHad → H2Oad + Oad, is also found to be very feasible with a barrier of ∼0.1 eV. These results show that on oxygen-covered surfaces production of hydroxyl species is highly likely, supporting previous experimental findings.  相似文献   

6.
Jeng-Han Wang 《Surface science》2006,600(5):1113-1124
We have studied the adsorption and decomposition of HN3 on Si(1 0 0)-2 × 1 surface using the hybrid density functional B3LYP method and effective core potential basis, LanL2DZ, with Si15H16 as a double dimer surface model for cluster calculations. The result shows that the barriers for the dissociative adsorption of HN3 forming HN(a) + N2(g) are quite low by stepwise dissociation processes occurring either on a dimer or across the dimers. The low activation energies are consistent with previous experimental observations that the molecularly adsorbed HN3(a) can undergo decomposition producing HN(a) at low surface temperatures. On the other hand, the predicted activation energies for the N3(a) + H(a) formation processes are all relatively higher. These results also explain the absence of the N3(a) species in HREELS measurements following each annealing experiment. Several selected reaction paths were also confirmed with slab model calculations using an optimization approach coupling the energy and gradient calculations by the slab model with the geometrical optimization using Berny algorithm.In addition, the adsorbate effect was examined for the end-on and side-on molecular configurations. For the side-on adsorption configuration, all possible combinations with 1-4 adsorbates can exist on the four surface Si sites of the double dimers, with adsorption energies lying closely to the multiples of that of a single side-on adsorbate (LM2); i.e., adsorption energies are nearly additive. Interestingly, for the end-on adsorption, only 1 and 2 HN3 molecules can adsorb on a dimer due to the presence of the negative charges on the remaining Si sites in the neighboring dimer. For the two end-on adsorbates on the same dimer, the total adsorption energy is close to two times that of HN3(a) or LM1. For the mixed end-on/side-on configurations, only one of each type can co-exist on a single dimer pair (Si1-Si2 or Si3-Si4) sites with adsorption energy close to the sum of those of one end-on and one side-on adsorbate. Finally, the predicted reaction routes and vibrational frequencies showed good agreement with previous experimental results. The stabilities of many ad-species involved in these reactions with end-on and/or side-on configurations have been predicted together with the transition states connecting those species.  相似文献   

7.
Structural, energetics, and mechanistics aspects of initial steps of the reaction of a N atom with Si(1 0 0)-2×1 modeled by the Si9H12+N system are reported. Hybrid density functional B3LYP calculations predict a barrierless first step leading to an adsorbate where N is bound to one of the dimer Si. Two possible activated routes for internal rearrangements were found, with that leading to the incorporation of Si below the first layer predicted to be kinetically dominant (98%) under the experimental conditions. This structure and frequency calculations are consistent with the experimental finding of a planar NSi3 moeity and with the experimental SiN asymmetric stretching frequency of the NSi3 groups.  相似文献   

8.
P. Mutombo  V. Cháb 《Surface science》2009,603(4):590-596
Density functional theory calculations have been performed to determine the adsorption site of carbon at the Si(1 1 1):As and Si(1 1 1):H surfaces at different coverages. The As- and H-passivated surfaces were simulated by replacing the topmost Si layer by As or by saturating the Si dangling bonds with hydrogen atoms, respectively. Different high symmetry sites were considered. Carbon was placed successively in the fourfold (T4) or threefold coordinated (H3), the ontop (T1) sites or substituted for a Si atom in the S5 position located underneath the Si adatom in the T4 site. We found that the preferred carbon adsorption site depends on the coverage of the passivated surfaces. At low coverages i.e. at 1/16 ML and 1/3 ML, it prefers a distorted T4 position whereas at 1 ML, it occupies an H3 site. This contrasts with the clean surface where the most energetically favored site is the S5 at all coverages. Carbon adsorption induces a significant change in the structural geometry of the surface atoms, leading to a charge re-arrangement in the surface layers.  相似文献   

9.
The Ga-adsorbed structure on Si(1 1 3) surface at low coverage has been studied by scanning tunneling microscopy (STM). The bright protrusion corresponding to the position of the dimer without the interstitial Si atom of the clean surface disappeared in the filled-state STM image after Ga adsorption, although the protrusion due to the Si adatom still remained. On the basis of the adatom-dimer-interstitial (ADI) model, this result indicates that the Ga atom is adsorbed interstitially at the center of another pentamer that does not have the interstitial Si atom. An ab initio calculation was performed and STM images were simulated.  相似文献   

10.
SiH4 and GeH4 dissociative adsorptions on a buckled SiGe(1 0 0)-2 × 1 surface have been analyzed using density functional theory (DFT) at the B3LYP level. The Ge alloying in the Si(1 0 0)-2 × 1 surface affects the dimer buckling and its surface reactivity. Systematic Ge influences on the reaction energetics are found in SiH4 and GeH4 reactions with four dimers of Si-Si, Ge-Si, Ge-Ge, and Si-Ge (∗ denotes the protruded atom). On a half H-covered surface, the energy barriers for silane and germane adsorption are higher than those on the pristine surface. The energy barrier for silane adsorption is higher than the corresponding barrier for germane adsorption. Rate constants are also calculated using the transition-state theory. We conclude that the SiGe surface reactivity in adsorption reaction depends on the Ge presence in dimer form. If the surface Ge is present in form of Ge-Ge, the surface reactivity decreases as the Ge-Ge content increases. If the surface Ge prefers to be in form of Ge-Si at low Ge contents, the surface reactivity increases first, then decreases at high Ge surface contents when Ge-Ge prevails. The calculated rate constant ratio of GeH4 adsorption on Si-Si over Ge-Ge at 650 °C is 2.1, which agrees with the experimental ratio of GeH4 adsorption probability on Si(1 0 0) over Si(1 0 0) covered by one monolayer Ge. The experimental ratio is 1.7 measured through supersonic molecular beam techniques. This consistency between calculation and experimental results supports that one monolayer of Ge on Si(1 0 0) exists in form of Ge-Ge dimer.  相似文献   

11.
We have investigated the adsorption mechanism of SiO molecule incident on a clean Si(1 0 0) p(2 × 2) reconstructed surface using density functional theory based methods. Stable adsorption geometries of SiO on Si surface, as well as their corresponding activation and adsorption energies are identified. We found that the SiO molecule is adsorbed on the Si(1 0 0) surface with almost no activation energy. An adsorption configuration where the SiO binds on the channel separating the dimer rows, forming a Si-O-Si bridge on the surface, is the energetically most favourable geometry found. A substantial red-shift in the calculated vibrational frequencies of the adsorbed SiO molecule in the bridging configurations is observed. Comparison of adsorption energies shows that SiO adsorption on a Si(1 0 0) surface is energetically less favourable than the comparable O2 adsorption. However, the role of SiO in the growth of silicon sub-oxides during reactive magnetron plasma deposition is expected to be significant due to the relatively large amount of SiO molecules incident on the deposition surface and its considerable sticking probability. The stable adsorption geometries found here exhibit structural properties similar to the Si/SiO2 interface and may be used for studying SiOx growth.  相似文献   

12.
Sukmin Jeong   《Surface science》2003,530(3):155-160
Using a first-principles method, we investigate the adsorption and diffusion of a Si adatom on the H-terminated Si(1 1 1) substrate, which would be useful in understanding the initial stages of Si homoepitaxy using a H surfactant. The adatom substitutes H atom(s) to form a monohydride structure or a dihydride structure. In forming the monohydride structure, the energy barrier for H substitution is absent. The adatom migrates on the surface with alternating its chemical state between monohydride and dihydride. These behaviors of the adatom are quite similar to those on the H/Si(0 0 1)2 × 1 surface, despite the significant difference in the substrate structure between both orientations. The resulting diffusion barrier is 1.30 eV, which is also comparable to that on the H/Si(0 0 1)2 × 1 surface.  相似文献   

13.
S. Riikonen  A. Ayuela 《Surface science》2006,600(18):3821-3824
The metal-insulator transition observed in the In/Si(1 1 1)-4 × 1 reconstruction is studied by means of ab initio calculations of a simplified model of the surface. Different surface bands are identified and classified according to their origin and their response to several structural distortions. We support the, recently proposed [C. González, J. Ortega, F. Flores, New J. Phys. 7 (2005) 100], combination of a shear and a Peierls distortions as the origin of the metal-insulator transition. Our results also seem to favor an electronic driving force for the transition.  相似文献   

14.
Experimental observations indicate that removing bridging oxygen atoms from the TiO2 rutile (1 1 0) surface produces a localised state approximately 0.7 eV below the conduction band. The corresponding excess electron density is thought to localise on the pair of Ti atoms neighbouring the vacancy; formally giving two Ti3+ sites. We consider the electronic structure and geometry of the oxygen deficient TiO2 rutile (1 1 0) surface using both gradient-corrected density functional theory (GGA DFT) and DFT corrected for on-site Coulomb interactions (GGA + U) to allow a direct comparison of the two methods. We show that GGA fails to predict the experimentally observed electronic structure, in agreement with previous uncorrected DFT calculations on this system. Introducing the +U term encourages localisation of the excess electronic charge, with the qualitative distribution depending on the value of U. For low values of U (?4.0 eV) the charge localises in the sub-surface layers occupied in the GGA solution at arbitrary Ti sites, whereas higher values of U (?4.2 eV) predict strong localisation with the excess electronic charge mainly on the two Ti atoms neighbouring the vacancy. The precise charge distribution for these larger U values is found to differ from that predicted by previous hybrid-DFT calculations.  相似文献   

15.
The atomic structure of the Au/Si(1 1 1)-(5 × 2) surface has been studied by density-functional theory calculations. Two structure models, proposed experimentally by Marks et al. and Hasegawa et al., have been examined on an equal ground. In our total-energy calculations, both models are found to be locally stable and energetically comparable. In our electronic-structure analyses, however, both models fail to reproduce the key features of angle-resolved photoemission spectra and scanning-tunneling-microscopy images, indicating that the considered models need to be modified. Suggestions for the modification are given based on the present calculations.  相似文献   

16.
The interactions between endohedrally doped N@C60 molecules and the Si(1 0 0) surface have been explored via ab initio total energy calculations. Configurations which have the cage located upon the dimer row bonded to two dimers (r2) and within the dimer trench bonded to four dimers (t4) have been investigated, as these have previously been found to be the most stable for the C60 molecule. We have investigated the differences between the adsorption of the C60 and N@C60 molecules upon the Si(1 0 0) surface and found that there are only minimal differences. Two interesting cases are the r2g and t4d configurations, as they both exhibit differences that are not present in the other configurations. These subtle differences have been explored in-depth. It is shown that the effects on the endohedral nitrogen atom, due to its placement within the fullerene cage, are small. Bader analysis has been used to explore differences between the C60 and N@C60 molecules.  相似文献   

17.
We have studied the segregation of P and B impurities during oxidation of the Si(1 0 0) surface by means of combined static and dynamical first-principles simulations based on density functional theory. In the bare surface, dopants segregate to chemically stable surface sites or to locally compressed subsurface sites. Surface oxidation is accompanied by development of tensile surface stress up to 2.9 Nm−1 at a coverage of 1.5 monolayers of oxygen and by formation of oxidised Si species with charges increasing approximately linearly with the number of neighbouring oxygen atoms. Substitutional P and B defects are energetically unstable within the native oxide layer, and are preferentially located at or beneath the Si/SiOx interface. Consistently, first-principles molecular dynamics simulations of native oxide formation on doped surfaces reveal that dopants avoid the formation of P-O and B-O bonds, suggesting a surface oxidation mechanism whereby impurities remain trapped at the Si/SiOx interface. This seems to preclude a direct influence of impurities on the surface electrostatics and, hence, on the interactions with an external environment.  相似文献   

18.
The ground state of the Ag/Si(1 1 1)-(3 × 1) has been investigated by low temperature scanning tunneling microscopy (STM) and density-functional theory. The Fourier transform of the STM image reveals a (6 × 2) reconstruction, which is theoretically found to yield a reconstruction with lower energy than the (3 × 1). The most stable (6 × 2) structural model leads to excellent correspondence between experimental and simulated STM images, and reveals a dimerization of the silver atoms in the channels formed by neighbouring honeycomb Si chains.  相似文献   

19.
Deoxygenation of the IrO2(1 1 0) surface is investigated at 403-493 K, using the core-level spectroscopy and density functional theory (DFT) calculation. The Ir-4f7/2 signals of 1f-cus-Ir with and without on-top oxygen (Otop) emerge as surface features of the baked-out surface, whose positive and negative shifts in binding energy are in line with the DFT computation results. Progressively increasing the reduction temperature, the 1f-cus-Ir feature quickly disappears and the signal of 2f-cus-Ir emerges at 403 K. Meanwhile the feature of 1f-cus-Ir + Otop diminishes but persists when the Ir metal signal is evident. The intriguing coexistence of 1f-cus-Ir + Otop and Ir metal at 433-443 K is elucidated in the theoretical pathway study. DFT calculation reveals that O2 desorption via pairing two neighboring Otop atoms is the rate-determining step of surface deoxygenation. Under the UHV conditions, Otop is replenished via migration of the surface oxygen species, including the threefold coordinated oxygen (O3f) of a reduced surface. Hence the Otop atom is an active and long-lived surface species, which does not vanish until O3f is consumed and surface Ir begins to cluster. Under the realistic pressure conditions, Otop can also be refreshed via the dissociative adsorption of gas-phase oxygen. In either pathway, Otop is a critical intermediary of IrO2(1 1 0) oxidation catalysis.  相似文献   

20.
M. Çakmak  E. Mete 《Surface science》2007,601(18):3711-3716
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(0 0 1)-(1 × 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favorable than the mixed Si-B dimer by 0.1 eV/dimer. However, when both of these cases are passivated by hydrogen atoms, the situation is reversed and the Si-B back-bond case becomes 0.1 eV/dimer higher in energy than the mixed Si-B dimer case. For the B incorporation corresponding to 1 ML coverage, among the substitutional cases, 100% interdiffusion into the third layer of Si and 50% interdiffusion into the second layer of Si are energetically similar and more favorable than the other cases that are considered. However, when the surface is passivated with hydrogen, the B atoms energetically prefer to stay at the third layer of the Si substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号