首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Sr0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show a rhombohedral structure with the space group . It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase of Te content. The Curie temperature TC decreases with increasing Te-doping level, in contrast, the magnetization magnitude of Te-doping samples at low temperatures increase with increasing x as x≤0.05 and then decrease with further increasing x to 0.15. The results are discussed in terms of the combined effects of the opening of the new double exchange (DE) channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ for Sr2+ and the reduction of the transfer integral b due to the decrease of the Mn-O-Mn bond angle.  相似文献   

2.
The effect of Co doping at Mn-site on the structural, magnetic and electrical transport properties in electron-doped manganties La0.9Te0.1Mn1−xCoxO3 (0≤x≤0.25) has been investigated. The room temperature structural transition from rhombohedra to orthorhombic (Pbnm) symmetry is found in these samples with x≥0.20 by the Rietveld refinement of X-ray powder diffraction patterns. All samples undergo the paramagnetic-ferromagnetic (PM-FM) phase transition. The Curie temperature TC of these samples decreases and the transition becomes broader with increasing Co-doping level. The magnetization magnitude of Co-doping samples increases at low temperatures with increasing Co-doping level for x≤0.15 and decreases with increasing Co-doping content further. The metal-insulator (M-I) transitions observed in the sample with x=0 are completely suppressed with Co doping, and the resistivity displays semiconducting behavior within the measured temperature region for these samples with x>0. All results are discussed according to the changes of the structure parameters and magnetic exchange interaction caused by Co-doping. In addition, the different effects between the Co doping and Cu doping in the Mn site for the electron-doped manganites are also discussed.  相似文献   

3.
The effect of Te-doping at La-site on structural, magnetic and transport properties in the manganites La0.7Ca0.3−xTexMnO3 (0≤x≤0.15) has been investigated. All samples show an orthorhombic structure (O′-Pbnm) at room temperature. It shows that the Mn-O-Mn bond angle decreases and the Mn-O bond length increases with the increase in the Te content. All samples exhibit an insulator-metal (I-M) transition and the resistivity increases with the increase in the Te-doping level. Additionally, the Curie temperature Tc decreases and the transition becomes broader with increasing Te-doping level, in contrast, the magnetization of Te-doping samples at low temperatures decrease with increasing x as x≤0.10 and then increase with further increasing x to 0.15. The results are discussed in terms of Jahn-Teller (JT) vibrational anisotropy Q3/Q2 and the opening of the new DE channel between Mn2+-O-Mn3+ due to the introduction of Mn2+ ions because of the substitution of Te4+ ions for Ca2+ ions.  相似文献   

4.
The samples with the Mn3+/Mn4+ ratio fixed at 2:1 La(2+x)/3Sr(1−x)/3Mn1−xCrxO3 (0≤x≤0.20) have been prepared. The magnetic, electrical transport, and magnetoresistance properties have been investigated. Remarkable transport and colossal magnetoresistance (CMR) effect, as well as cluster glass (CG) behaviors have been clearly observed in the samples studied. It was found that the Curie temperature Tc and insulator−metal transition temperature Tp1 are strongly affected by Cr substitution. The experiment observations are discussed by taking into account the variety of tolerance factors t; the effects of A-site radius 〈rA〉 and the A-site mismatch effect (σ2).  相似文献   

5.
The effect of Gd-doping on the charge ordering (CO) state in perovskite-type manganates Bi0.3−xGdxCa0.7MnO3 with x=0, 0.02, 0.05, 0.1, 0.3 has been investigated by transport and magnetic property measurements. It is found that CO temperature (TCO) and antiferromagnetic (AFM) ordering temperature TN occurring below TCO decrease obviously with increasing Gd-doping level. Accompanying the variation of TCO, the increased magnetization and the decreased resistivity are observed. In addition, the increased magnetic inhomogeneity has been also observed in the samples based on the difference between the zero-field-cooling (ZFC) magnetization MZFC and field-cooling (FC) magnetization MFC, which is ascribed to the competition between ferromagnetic (FM) phase induced by Gd-doping and CO AFM phase. The experimental results indicate that the Bi3+ lone pair electron with 6s2 character plays a dominating role on the CO state of Bi0.3Ca0.7MnO3.  相似文献   

6.
Cr-doped manganites Sr0.9Ce0.1Mn1−yCryO3 (y=0, 0.05, and 0.10) have been systematically investigated by X-ray, magnetic, transport, and elastic properties measurements. For parent compound Sr0.9Ce0.1MnO3, it undergoes a metal-insulator (M-I) transition at 318 K, which is suggested to originate from a first-order structural transition accompanied by Jahn-Teller (JT) transition. With increasing Cr doping content, the JT transition temperature decreases. The Cr doping suppresses the antiferromagnetic (AFM) state and makes the system spin-glass (SG) behavior at low temperatures. In the vicinity of JT transition temperatures, the softening of Young's modulus originating from the coupling of the orbital (quadrupolar) moment of the eg orbital of Mn3+ ion to the elastic strain has been observed. The anomalous Young's modulus properties imply the electron-phonon coupling due to the JT effect may play an important role in the system.  相似文献   

7.
The magnetic property of double doped manganite Nd0.5(1+x)Ca0.5(1−x)Mn(1−x)CrxO3 with a fixed ratio of Mn3+:Mn4+=1:1 has been investigated. For the undoped sample, it undergoes one transition from charge disordering to charge ordering (CO) associated with paramagnetic (PM)-antiferromagnetic (AFM) phase transition at T<250 K. The long range AFM ordering seems to form at 35 K, rather than previously reported 150 K. At low temperature, an asymmetrical M-H hysteresis loop occurs due to weak AFM coupling. For the doped samples, the substitution of Cr3+ for Mn3+ ions causes the increase of magnetization and the rise of Tc. As the Cr3+ concentration increases, the CO domain gradually becomes smaller and the CO melting process emerges. At low temperature, the FM superexchange interaction between Mn3+ and Cr3+ ions causes a magnetic upturn, namely, the second FM phase transition.  相似文献   

8.
A comprehensive study of the effect of Fe doping on CaMnO3 is carried out by means of experiments on the structural, transport conduction, and magnetic properties of CaMn1−xFexO3 (0≤x≤0.35). With a sol-gel process for sample preparation, Fe is substituted for Mn up to x=0.35. This substitution substantially brings out the lattice expansion and gradually suppresses the antiferromagnetism. For x=0.08 and 0.10 in particular, the magnetization curves with a field-cooled mode under the field of 1 kOe behave as those of a ferrimagnetic-like system and present low-temperature negative magnetization. For x≥0.15, the negative magnetization phenomenon disappears, and a ferromagnetic component coexists with an antiferromagnetic one, but the antiferromagnetic interaction still dominates in these compounds. Electrical transport measurements show insulating behavior for all compositions. Fe doping, even at a level as low as x=0.02, can cause a marked resistivity increase in the temperature range studied. Further increasing the Fe content causes the resistivity to gradually decrease due to the increasing carrier presence.  相似文献   

9.
The evolution of magnetic and electrical phases in La0.8−δCa0.2MnO3 was investigated in terms of La deficiency. We found that the increase of the La deficiency tends to raise the Curie temperature (TC) in La0.8−δCa0.2MnO3. The FM clusters formed in compounds with large La deficiency provide percolation paths above TC. With increasing the La defect, the transport property changes from insulating to metallic state, which is in association with the crossover from a second order to a first order magnetic phase transition in the vicinity of TC.  相似文献   

10.
We have synthesized a series of La0.7(Ca0.3−xCex)MnO3 (0≤x≤0.2) by standard solid-state reaction method. X-ray diffraction (XRD) measurement was carried out for structural studies and Rietveld refinement was done for structural analysis. The transport properties were studied using four probe technique. The temperature dependence of the resistivity was measured in the temperature range of 20 K to room temperature. It is found that all samples show a systematic variation in metal to insulator transition at transition temperature (TP) and resistivity (ρ) with the relative concentration of hole and electron doping in the system. The samples showed varying amounts of colossal magnetoresistance depending upon temperature and applied magnetic field. The magnetoresistance values as high as 72% were observed in x=0 sample.  相似文献   

11.
12.
The magnetic and transport properties of La1−xCaxMnO3 (0≤x<0.4) have been systematically studied. The magnetoresistance (MR) maximum appears at x=0.2-0.25 and the temperature dependence of MR for x>0.25 shows a much broader profile than that of samples for x=0.2-0.25. Based on a scenario in which there is a short-range charge ordering (CO) state coexisting in the ferromagnetic state matrix for x>0.25, and the least or even no short-range CO state exists in samples for x=0.2-0.25, the above observations can be understood.  相似文献   

13.
Nanocrystalline La1−xBaxMnO3 (0.0≤x≤0.3) manganites have been prepared by a simple and instantaneous solution combustion method, which is a low temperature initiated synthetic route to obtain fine-grained powders with relatively high surface area. The phase purity and crystal structure of the combustion products are carried out by powder X-ray diffraction. The as-made nanopowders are in cubic phase. On calcination to 900 °C, barium doped manganites retain cubic phase, whereas barium free manganite transformed to rhombohedral phase. The scanning electron microscope (SEM) results revealed that the combustion-derived compounds are agglomerated with fine primary particles. The doped manganites have surface area in the range 24-44 m2/g. The surface area of the manganites increases with barium content, whereas it decreases on calcination. Both undoped and doped lanthanum manganites show two active IR vibrational modes at 400 and 600 cm−1. The low temperature resistivity measurements have been carried out by four-probe method down to 77 K. All the samples exhibit metal-insulator behaviour and metal-insulator transition temperature (TM-I) in the range 184-228 K and it is interesting to note that, as the barium content increases the TM-I shifts to lower temperature side. The maximum TM-I of 228 K is observed for La0.9Ba0.1MnO3 sample.  相似文献   

14.
We have investigated the magnetic phase diagram of polycrystalline and single-crystal La1−xSrxMnO3 near 0.46≤x≤0.50. It turns out that for x<0.48, the polycrystalline material is ferromagnetic (FM), but for x≥0.48, incipient charge ordering takes place along with antiferromagnetism. At x=0.48, the ferromagnetic-antiferromagnetic phase transition in ceramics occurs at less than 85 kOe but requires significantly larger field for increasing x. These observations are in contrast to what is found in the single crystals, which are all FM.  相似文献   

15.
The effect of Al substitution for Mn site in layered manganese oxides La1.3Sr1.7Mn2−xAlxO7 on the magnetic and electrical properties has been investigated. It is interesting that all the samples undergo a similar and complex transition with lowing temperature; they transform from the two-dimensional short-range ferromagnetic order at T*, then enter the three-dimensional long-range ferromagnetic state at TC, at last they display the canted antiferromagnetic state below TN. T*, TC and TN are all reduced with Al content. Resistivity increases sharply with increasing Al concentration, and the metal-insulator transition disappears when x reaches 10%. Additionally, magnetoresistance (MR) effect is weakened. Al substitution dilutes the magnetic active Mn-O-Mn network and weakens the double exchange interaction, and further suppresses FM ordering and metallic conduction. Owing to the anisotropic interaction in the layered perovskite, the magnetic and electrical properties are more sensitive to Al doping level than those in ABO3-type perovskite.  相似文献   

16.
Composite samples (1−x)La0.7Ca0.2Sr0.1MnO3(LCSMO)+x(ZnO) with different ZnO doping levels x have been investigated systematically. The structure and morphology of the composites have been studied by the X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The XRD and SEM results indicate that no reaction occurs between LCSMO and ZnO grains, and that ZnO segregates mostly at the grain boundaries of LCSMO. The magnetic properties reveal that the ferromagnetic order of LCSMO is weakened by addition of ZnO. The results also show that ZnO has a direct effect on the resistance of LCSMO/ZnO composites, especially on the low-temperature resistance. With increase of the ZnO doping level, TP shifts to a lower temperature and the resistance increases. It is interesting to note that an enhanced magnetoresisitance (MR) effect for the composites is found over a wide temperature range from low temperature to room temperature in an applied magnetic field of 3 kOe. The maximum MR appears at x=0.1. The low field magnetoresistance (LFMR) results from spin-polarized tunneling. However, around room temperature, the enhanced MR of the composites is caused by magnetic disorder.  相似文献   

17.
The role of vibrational anisotropy of Mn3+O6 octahedron in the phase separation behavior of La0.67−yPryCa0.33MnO3 (x=0, 0.15, 0.25 and 0.30) has been investigated by means of magnetization M, internal friction Q−1, Young's modulus E along with the X-ray powder diffraction measurements. For the samples with y=0 and 0.15, the Q−1 exhibits three peaks in the ferromagnetic region, which are attributed to the intrinsic inhomogeneity of ferromagnetic phase, i.e. the electronic phase separation with the coexistence of insulating and conducting phases. However, both the samples with y=0.25 and 0.30 undergo a magnetic phase separation with the coexistence of the antiferromagnetic and ferromagnetic phases, and the Q−1 peaks related to the electronic phase separation have not been observed. In addition, the Q−1 exhibits a peak in the paramagnetic region for all samples, which may result from the formation of magnetic clusters. We observed that the evolution from electronic to magnetic phase separation is close related to the rapid increase in the ratio of two kinds of Jahn-Teller distortion modes Q3 and Q2, i.e. Q3/Q2. A schematic phase diagram is given in the text, and it is suggested that the enhancement of vibrational anisotropy of Mn3+O6 octahedron plays a key role in the evolution from electronic to magnetic phase separation.  相似文献   

18.
The influence of SiO2 on the electrical transport properties of LCMO/SiO2 composites with different SiO2 contents x is investigated, where LCMO represents La2/3Ca1/3MnO3. Results show that the SiO2 phase not only shifts the metal–insulator transition temperature (Tp) to a high temperature range, but also has an effect on the magnetoresistance (MR) of the composites. The temperature dependence of resistivity indicates that the Tp of the composites is obviously higher than that of pure LCMO, and that the peak resistivity ρmax of the composites is lower than that of pure LCMO. In the SiO2 content x∼0.02, the TP is the highest and ρmax becomes the lowest. The experimental observation is discussed on the basis of the analysis of scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns. Compared with pure LCMO, a possible interpretation is presented by considering the influence of SiO2 on the coupling between ferromagnetic (FM) domains of LCMO.  相似文献   

19.
The dc magnetization and ac susceptibility measurements on two dimensional layered manganite La1.2Ba1.8Mn2O7 samples reveal the occurrence of ferromagnetism above room temperature with ferromagnetic (FM) to paramagnetic (PM) transitions at 338 K. The bifurcation temperatures shown by the zero-field cooled (ZFC) and field cooled (FC) dc magnetization curves at high temperatures shift towards lower temperatures as the applied field is increased from 100 to 2500 Oe. The data are suggestive of a large magnetic anisotropy due to the strong competing ferromagnetic and antiferromagnetic interactions resulting in a spin-glass-like state. Ru doping is found to enhance the ferromagnetism and metallicity of the system in a remarkable way. The magnetoresistance (MR) values obtained are very high and about 40% even at 260 K for the undoped sample.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号