首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a comparison of electron-phonon interaction in NbB2 and MgB2, calculated using full-potential, density-functional-based methods in P6/mmm crystal structure. Our results, described in terms of (i) electronic structure, (ii) phonon density of states F(ω), (iii) Eliashberg function α2F(ω), and (iv) the solutions of the isotropic Eliashberg gap equation, clearly show significant differences in the electron-phonon interaction in NbB2 and MgB2. We find that the average electron-phonon coupling constant λ is equal to 0.59 for MgB2 and 0.43 for NbB2, leading to superconducting transition temperatures Tc at around 22 K for MgB2 and 3 K for NbB2.  相似文献   

2.
We have measured the temperature dependence of the upper critical field, Hc2(T), of carbon-doped MgB2. Hc2(T) does not follow the well-known Werthamer-Helfand-Hohenberg (WHH) result for a one-gap dirty superconductor but can be described well by the result of a recent theoretical calculation for a two-gap dirty superconductor. Hc2(0) of the carbon-doped material is determined to be between 29 and 38 T, substantially higher than that of pure MgB2 (15-23 T).  相似文献   

3.
Single core stainless steel (SS) sheathed MgB2 tapes have been made by the powder-in-tube (PIT) method using commercial Mg and B powders in two series, one with nominal composition and the other with excess Mg. The electrical resistivity and susceptibility measurements have been carried out to evaluate residual resistivity ratio (RRR), the coherence length ξ(0) and critical current density JC(T) in these tapes. Detailed structural analysis of the core material has been carried out to correlate the superconducting properties with the crystallinity. In the optimized growth condition the MgB2 tapes exhibited an estimated JC of ∼1.4×107 A/m2 at 39.45 K in zero field and the zero temperature coherence length is found to be ∼68 Å. MgB2 tapes fabricated from starting powders having nominal Mg-composition have been shown to exhibit higher JC than those fabricated from excess magnesium composition of the starting powders. The strained lattice together with the presence of nanosized MgO inclusion having size smaller than the coherence length, are shown to be responsible for the observed higher JC.  相似文献   

4.
The magnetoresistivity and critical current density of well characterized Si-nanoparticle doped and undoped Cu-sheathed MgB2 tapes have been measured at temperatures T≥28 K in magnetic fields B≤0.9 T. The irreversibility line Birr(T) for doped tape shows a stepwise variation with a kink around 0.3 T. Such Birr(T) variation is typical for high-temperature superconductors with columnar defects (a kink occurs near the matching field B?) and is very different from a smooth Birr(T) variation in undoped MgB2 samples. The microstructure studies of nanoparticle doped MgB2 samples show uniformly dispersed nanoprecipitates, which probably act as a correlated disorder. The observed difference between the field variations of the critical current density and pinning force density of the doped and undoped tape supports the above findings.  相似文献   

5.
Bulk polycrystalline samples of Eu2O3-doped MgB2 have been synthesized by a standard solid state reaction route and their structural and superconducting properties have been investigated. As a function of Eu2O3 content we have found a significant increase in the critical current density (Jc) and the irreversibility field (Hirr) in the magnetic field range 0–6 T. The XRD results reveal the presence of MgO and EuB6 secondary phases along with the main hexagonal phase of MgB2. The strain values and the lattice distortions have been found to increase almost linearly with the nominal Eu2O3 content. The observed significant improvement in Jc(H) and Hirr in the Eu2O3-doped MgB2 samples, thus is mainly attributed to the lattice distortions introduced by Eu2O3 doping.  相似文献   

6.
For the development of a low-cost MgB2 superconductor the “powder-in-tube” (PIT) technique is investigated. Mechanically alloyed MgB2 powder provides a favorable microstructure and phase composition for the low temperature preparation of MgB2 tapes with superconducting properties. The composition of sintered bulk samples and Fe-clad MgB2 tapes made of mechanically alloyed MgB2 has been investigated by Auger micro-analysis. Due to the process the samples contain about 15% oxygen. Pure MgB2 crystallites were investigated as standard for stoichiometry and peak shape analysis.  相似文献   

7.
The effects of polymers doping on irreversibility field (Hirr) and critical current density (Jc) of MgB2 have been investigated in this work. It is found that both Jc, and Hirr, are improved by doping at relative lower temperature region. The JcB curves of all samples studied in this work are well fitted using Jc(B) formula in percolation model. The values of upper critical field anisotropy (γ) are obtained from the fitting result at various temperatures. It is observed that values of γ for polymers doping samples are reduced at these temperatures. This is considered to be responsible for the enhancement of values of Jc for doped samples. Moreover, the percolation threshold, pc, is found to be enhanced with increasing temperature. It is believed that the grain boundary pinning is still dominating in MgB2, while the deviation of experimental data from the theoretical values is due to the percolation of suppercurrent in polycrystalline MgB2.  相似文献   

8.
In this paper we aimed at investigating the flux pinning property of MgB2 films on hastelloy tapes which are buffered on various thicknesses of SiC layers. We have observed that the increase in thickness of the SiC buffer layer is very closely related with the systematic improvement of the field dependence of the critical current densities (Jc) of MgB2 tapes while the values of Jc decreased. According to the analysis of the pinning force density (Fp), there exist two pinning sources both in the pure MgB2 and in the MgB2 film with the thinnest SiC buffer layer. On the while, the pinning source observed in the MgB2 films with thicker SiC buffer layers appears to be different from those previously mentioned. The different pinning behaviors of MgB2 films may suggest that there be an additional pinning center working on the MgB2 films with thick SiC buffer layers. The microstructural analyses of MgB2 films confirmed that intra-granular defects and columnar grain boundaries may be a dominant pinning mechanism in the pure MgB2 and the MgB2 film with 170 nm-thick SiC buffer layer. For the MgB2 films with thicker SiC buffer layers, carbon diffusion into the MgB2 film, which is defined by the Auger electron spectroscopy, may be the origin of the additional pinning mechanism.  相似文献   

9.
The nanoparticle–MgB2 composite superconducting sample, (SiC)4wt.%(MgB2)96wt.% ((SiC)4–MgB2), was prepared, and the effect of nanoparticle additions on the magnetic flux pinning was investigated. The measurement and comparison of isothermal magnetization M(H), for pure-MgB2 powder and sintered pellets of (SiC)4–MgB2 and pure-MgB2 were carried out at temperatures between 5 and 50 K in fields up to 8.5 T. The magnetic irreversibility ΔM(H) curves of the (SiC)4–MgB2 follow almost identical lines of both pure-MgB2 powder and sintered bulk MgB2 in the region above a specific magnetic field (called a merged field), which gradually decreases as the temperature increases. The (SiC)4–MgB2 composite superconductor has exhibited the flux pinning effect which comes from both the grain boundaries and the point defect weak pinning centers in the region below the merged field line. This is different from the case of pure-MgB2 powder and sintered bulk MgB2 which showed mostly the grain boundaries pinning.  相似文献   

10.
We present experimental and calculated phase diagrams of the upper critical field Hc2 and the anisotropy parameter γ of various MgB2 thin films prepared by the molecular beam epitaxy (MBE) and the multiple-targets sputtering system. Experimental data of the Hc2(T) and γ are analyzed by fitting the Gurevich theory. We obtained the result that for these MgB2 films the Hc2(T) is explained as the case of Dπ/Dσ>1, which means the films are classified to the cleaner π band than the σ band. We discuss temperature dependence of the transition width obtained from the magnetoresistance measurements.  相似文献   

11.
We study the superconducting electronic structures of Nb3Al and MgB2 using high-resolution spectroscopy. The obtained spectrum of Nb3Al measured below Tc shows clear opening of the superconducting gap with a sharp pile up in the density of states and a shift of the leading edge. In addition, the spectrum shows a peak-dip-hump line shape expected from the strong-coupling theory. On the other hand, for MgB2, the superconducting-state spectrum measured at 5.4 K shows a coherent peak with a shoulder structure, in sharp contrast to that expected from a single isotropic gap. The superconducting spectral shape of MgB2 can be explained in terms of a multicomponent gap.  相似文献   

12.
《Current Applied Physics》2014,14(9):1277-1281
We have investigated the critical current density for MgB2 films having various crystal orientations prepared by using a hybrid physical-chemical vapor deposition system. An enhancement of the critical current density is clearly presented in MgB2 films with an a-axis or a b-axis orientation rather than a c-axis orientation. X-ray diffraction patterns reveal a suppression of c-axis orientations while a (100) orientation becomes dominant, and the surface morphology of the a-axis-oriented film shows that the orientation of the c-axis-oriented MgB2 grains parallel to the plane of the substrate. As the a-axis orientation becomes more dominant in the MgB2 films, the field performance of the critical current density clearly becomes better. These results suggest that the synthesis of MgB2 with high ab-plane orientations is one of the keys to enhancing the critical current density in MgB2.  相似文献   

13.
Nano-diamond and titanium concurrently doped MgB2 nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on JcH behavior and pinning force scaling features of MgB2 have been investigated. Although Tc was slightly depressed, Jc of MgB2 have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the Jc value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB2, a unique nanocomposite in which TiB2 forms a thin layer surrounding MgB2 grains whereas nano-diamond particles were wrapped inside the MgB2 grains. Besides, nano-diamond doping results in a high density stress field in the MgB2 samples, which may take responsibility for the Δκ pinning behavior in the carbon-doped MgB2 system.  相似文献   

14.
We have studied the superconducting properties of MgB2 from first-principles under isotropic, uniaxial, and biaxial compressions. We find that the in-plane boron phonons near the zone-center are very anharmonic and strongly coupled to the planar B σ bands near the Fermi level. This mode is found to be the key to quantitatively explain the observed high Tc, the total isotope effect and the pressure dependence of Tc. We propose that a stringent test on the hole and phonon based theories of the superconductivity in MgB2 would be a measurement of the biaxial ab-compression dependence of Tc.  相似文献   

15.
The MgB2 coated superconducting tapes have been fabricated on textured Cu (0 0 1) and polycrystalline Hastelloy tapes using coated conductor technique, which has been developed for the second generation high temperature superconducting wires. The MgB2/Cu tapes were fabricated over a wide temperature range of 460-520 °C by using hybrid physical-chemical vapor deposition (HPCVD) technique. The tapes exhibited the critical temperatures (Tc) ranging between 36 and 38 K with superconducting transition width (ΔTc) of about 0.3-0.6 K. The highest critical current density (Jc) of 1.34 × 105 A/cm2 at 5 K under 3 T is obtained for the MgB2/Cu tape grown at 460 °C. To further improve the flux pinning property of MgB2 tapes, SiC is coated as an impurity layer on the Cu tape. In contrast to pure MgB2/Cu tapes, the MgB2 on SiC-coated Cu tapes exhibited opposite trend in the dependence of Jc with growth temperature. The improved flux pinning by the additional defects created by SiC-impurity layer along with the MgB2 grain boundaries lead to strong improvement in Jc for the MgB2/SiC/Cu tapes. The MgB2/Hastelloy superconducting tapes fabricated at a temperature of 520 °C showed the critical temperatures ranging between 38.5 and 39.6 K. We obtained much higher Jc values over the wide field range for MgB2/Hastelloy tapes than the previously reported data on other metallic substrates, such as Cu, SS, and Nb. The Jc values of Jc(20 K, 0 T) ∼5.8 × 106 A/cm2 and Jc(20 K, 1.5 T) ∼2.4 × 105 A/cm2 is obtained for the 2-μm-thick MgB2/Hastelloy tape. This paper will review the merits of coated conductor approach along with the HPCVD technique to fabricate MgB2 conductors with high Tc and Jc values which are useful for large scale applications.  相似文献   

16.
We investigated the influence of surface damage on the critical current density (Jc) of MgB2 thin films via 140-keV Co-ion irradiation. The Jc(H) of the surface-damaged MgB2 films was remarkably improved in comparison with that of pristine films. The strong enhancement of Jc(H) caused by a surface damage in MgB2 films can be ascribed to additional point defects along with an atomic lattice displacement introduced through low-energy Co-ion irradiation, which is consistent with the change in the pinning mechanism, from weak collective pinning to strong plastic pinning. The irreversible magnetic field (Hirr) at 5 K for surface-damaged MgB2 films with a thickness of 850 and 1300 nm was increased by a factor of approximately 2 compared with that of a pristine film. These results show that the surface damage produced by low energy ion irradiation can serve as an effective pinning source to improve Jc(H) in a MgB2 superconductor.  相似文献   

17.
Porous magnesium diboride samples have been prepared by the heat treatment of a pressed mixture of Mg and MgB2 powders. It was found that linked superconducting structure is formed down to the minimum normalized density γc=d/d0≅0.16 (percolation threshold), where d is the density of MgB2 averaged over the sample, d0=2.62 g/cm3 is the X-ray density. Lattice parameters and critical temperature of the porous sample decrease with increasing porosity (decreasing γ) and Tc2≅32 K is minimal at γc. The grain boundaries in the porous samples are transparent for the current and Jc∼3×105 A/cm2 in self field at T=20 K in the samples with γ∼0.24.  相似文献   

18.
MgB2 coated conductors (CCs), which can avoid the low packing density problem of powder-in-tube (PIT) processed wires, can be a realistic solution for practical engineering applications. Here we report on the superior superconducting properties of MgB2 CCs grown directly on the flexible metallic Hastelloy tapes without any buffer layer at various deposition temperatures from 520 to 600 °C by using hybrid physical–chemical vapor deposition (HPCVD) technique. The superconducting transition temperatures (Tc) are in the range of 38.5–39.4 K, comparable to bulk samples and high quality thin films. Clear (101) and (002) reflection peaks of MgB2 are observed in the X-ray diffraction patterns without any indication of chemical reaction between MgB2 and Hastelloy tapes. From scanning electron microscopy, it was found that connection between MgB2 grains and voids strongly depend on the growth temperature. A systematic increase in the flux pinning force density and thereby the critical current density with decreasing growth temperature was observed for the MgB2 CCs. The critical current density (Jc) of Jc(5 K, 0 T) ~107 A/cm2 and Jc(5 K, 2.5 T) ~105 A/cm2 has been obtained for the sample fabricated at a low growth temperature of 520 °C. The enhanced Jc (H) behavior can be understood on the basis of the variation in the microstructure of MgB2 CCs with growth temperature.  相似文献   

19.
MgB2 tapes were fabricated through an ex situ process in a powder-in-tube (PIT) technique using powders treated at elevated temperatures in benzene solutions of benzoic acid with various concentrations. The amount of carbon substitution in MgB2 in heat-treated tapes with treatment at the boiling points (BPs) of the solutions is smaller than that at room temperature (RT). This carbon substitution improves the Jc property in the high-field region. For RT treatment, the Jc property is improved with increasing the solution concentration. In contrast, the Jc property is deteriorated with increasing the concentration for BP treatment. On the other hand, treatment with pure solvent does not bring about the Jc enhancement and carbon substitution at all at both RT and the BPs. This suggests that acidity essential for the dissolution of MgO layers attached to the surface of MgB2 is required for carbon substitution. The BP treatment enhances the acting of the acidity and possibly inflicts damage on MgB2 itself.  相似文献   

20.
Exposure effect of ambient (up to a period of 465 days) and humid atmosphere on stability and the physical properties of bulk samples of MgB2 has been carried out based on ac-susceptibility and X-ray diffraction measurements performed at different times during the aging. The motivation of this study came from the device application potential of MgB2 superconductor. It has been observed that on initial exposure to ambient for a period of about 2 months, the MgB2 samples neither show any sign of phase decomposition nor any significant degradation of superconducting parameters. However, on further exposure to ambient for a period greater than 4 months duration, the samples progressively exhibited the partial conversion of MgB2 phase into Mg-deficient phases, viz., MgB6 and MgB12 and also leading to formation of Mg(OH)2 which is accompanied by decrease in the TC and poor connectivity of the superconducting grains. When exposed to humid environment for a period of 30 days, a significant degradation was observed in the superconducting properties of MgB2. In sharp contrast to the case of ambient exposure, the exposure of MgB2 to humid atmosphere (for 30 days) did not result in any noticeable phase decomposition. A comparison of the magnetically inferred critical current density behavior before and after the humidity exposure of MgB2 is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号