首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface optimised S 2p photoelectron spectra show that both surface S2− monomers and (S-S)2− dimers are present at pyrite (1 0 0) fracture surfaces. In order to determine which sulfur species are involved in Cu adsorption, fresh pyrite surfaces were exposed to Cu2+ in solution. The S 2p spectra suggest that both types of S surface species are involved in the mechanism of Cu adsorption (activation). Ab initio density functional theory was used to model Cu adsorbed onto pyrite (1 0 0) to support the interpretation of the spectroscopy. Mulliken population analysis confirms the charge distribution suggested by the core line shifts as observed in the photoelectron spectra. The ab initio calculations were consistent with a two-coordinate bond between Cu(I), a surface S monomer and a surface S dimer.  相似文献   

2.
Using a combination of scanning tunneling microscopy (STM) and density functional theory calculations, we have studied the adsorption of tetracene on the Cu(1 1 0) (2 × 1)O substrate. At monolayer coverage the adsorbed molecules are in the flat-laying geometry with their long axis along the close-packed [0 0 1] direction of the substrate and a long-range ordered structure on the length scale up to 100 nm has been observed. DFT calculation results indicate a stronger interaction between tetracene molecules and Cu(1 1 0) substrate than Cu(1 1 0) (2 × 1)O substrate. The preferential adsorption sites have also been pointed out on both substrates. The observed wavelike structure is explained by the interdigitation of C-H bonds of adjacent molecules.  相似文献   

3.
The Cs/Cu(1 1 1) and Na/Cu(1 1 1) systems exhibit a transient excited electronic state localized on the adsorbate. Photo-excitation of this state triggers a motion of the alkali adsorbate away from the surface, leading to vibrational excitation of the adsorbate and possibly to desorption. A theoretical study of these photo-induced processes in the case of an exciting fs laser pulse is reported, based on a time-dependent approach of the adsorbate motion. The mean energy transfer from the laser photon energy to the adsorbate motion is shown to be weak, about 1% of the photon energy. Correspondingly, the vibrational excitation to high lying levels is very weak as well as the desorption process. The initial electronic state of the photo-induced process belongs to a continuum and vibrational excitation and desorption are found to vary rapidly with the energy of the initial electronic state. Initial vibrational excitation of the alkali adsorbate is also found to efficiently favour the desorption process, leading to a drastic variation of the desorption probability with the vibrational temperature of the adsorbate. The present results for the two systems are discussed and compared, in connection with available experimental data on these systems and on similar ones.  相似文献   

4.
With static relaxation, the surface diffusion activation energies of a single Cu adatom migrated by both atomic exchange and hopping mechanisms and the forces acted on the diffusing adatom from other atoms of Cu (0 0 1) or (1 1 0) surface are calculated by using the MAEAM. When adatom migrated on Cu (0 0 1) or (1 1 0) surface, the increment curves of the system energy by hopping mechanism are symmetrical and the saddle points are in the midpoints of the migration path, but the ones by the exchange mechanism are dissymmetrical and the saddle points are always close to the initial hole positions of the adatom and away from the initial equilibrium positions of the exchanged atom. From minimization of both the diffusion activation energy and the force acted on the diffusing adatom from other atoms, we found that, on Cu (0 0 1) surface the favorable diffusion mechanism is hopping mechanism, however, on Cu (1 1 0) surface, hopping via long bridge is easier than the exchange mechanism but the hopping via short bridge is more difficult than the exchange mechanism.  相似文献   

5.
Y. Hu 《Surface science》2006,600(3):762-769
We present a reflectance difference spectroscopy (RDS) study of para-sexiphenyl (p-6P) thin film growth on Cu(1 1 0) and Cu(1 1 0)-(2 × 1)O substrates. The RDS spectra show pronounced anisotropies for p-6P films formed on both substrates at room temperature, demonstrating that the molecules are uniaxially aligned within the films. Based on the RD spectra and the evolution of the optical transitions with p-6P coverage the growth mode on both substrates could be identified. From the dominating RDS feature, assigned to the lowest energy HOMO-LUMO transition, the orientation of the molecular chain can be determined. On Cu(1 1 0), the p-6P molecular chains align in the direction, i.e., along the Cu atomic rows, whereas on the Cu(1 1 0)-(2 × 1)O surface, the molecules are oriented in the orthogonal [0 0 1] direction, i.e., along the “added” Cu-O rows of the Cu(1 1 0)-(2 × 1)O surface. The energetic position and line shape of the main RDS feature differs for the two substrates and varies with p-6P coverage. This fine structure is discussed in terms of different molecular conformations, adlayer structure and vibronic replicas.  相似文献   

6.
Xueying Zhao 《Surface science》2006,600(10):2113-2121
The adsorption of glycine on Au(1 1 1) pre-deposited with different amounts of Cu was investigated with both conventional X-ray photoelectron spectroscopy (XPS) and synchrotron-based photoemission. In the Cu submonolayer range, glycine physically adsorbs on the Cu/Au(1 1 1) surfaces in its zwitterionic form and completely desorbs at 350 K. The C 1s, O 1s and N 1s core level binding energies monotonically increase with Cu coverage. This indicates that, in the Cu submonolayer range, the admetal is alloyed with Au rather than forming overlayers on the Au(1 1 1) substrate, consistent with our recent experimental and theoretical results [X. Zhao, P. Liu, J. Hrbek, J.A. Rodriguez, M. Pérez, Surf. Sci. 592 (2005) 25]. Upon increasing the amount of deposited Cu over 1 ML, part of the glycine overlayer transforms from the zwitterionic form to the anionic form (NH2CH2COO) and adsorbs chemically on the Cu/Au(1 1 1) surface with the N 1s binding energy shifted by −2.3 eV. When the amount of deposited Cu is at 3.0 or 6.0 ML, the intensity of the N 1s chemisorption peak increases with aging time at 300 K. It indicates that glycine adsorption induces Cu segregation from the subsurface region onto the top layer of the substrate. Judging from the initial N 1s peak intensities, it is concluded that 64% and 36% of the top layer are still occupied by Au atoms before glycine adsorption even when the amounts of deposited Cu are 3.0 and 6.0 ML, respectively. On the Au(1 1 1) surface pre-dosed with 6.0 ML of Cu, part of the chemisorbed glycine will desorb and part will decompose upon heating to 450-500 K. In addition, about 20% of the glycine exists in the neutral form when the glycine overlayer was dosed on Cu/Au(1 1 1) held at 100 K.  相似文献   

7.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

8.
Density functional theory (DFT) slab calculations, mainly using the generalised gradient approximation, have been used to investigate the minimum energy structures of molecular SO2 and SO3 on Cu(1 1 1) and Ni(1 1 1) surfaces. On Ni(1 1 1) the optimal local adsorption structures are in close agreement with experimental results for both molecular species obtained using the X-ray standing wavefield technique, although for adsorbed SO2 the energetic difference between two alternative lateral positions of the lying-down molecule on the surface is marginally significant. On Cu(1 1 1) the results for adsorbed SO2, in particular, were sensitive to the DFT functional used in the calculations, but in all cases failed to reproduce the experimentally-established preference for adsorption with the molecular plane perpendicular to the surface. This result is discussed in the context of previously published DFT results for these species adsorbed on Cu(1 0 0). The optimal geometry found for SO3 on Cu(1 1 1) is similar to that on Ni(1 1 1), providing agreement with experiment regarding the molecular orientation but not the adsorption site.  相似文献   

9.
The interactions of H and H2 with W(1 0 0)-c(2 × 2)Cu and W(1 0 0) have been investigated through density functional theory (DFT) calculations to elucidate the effect of Cu atoms on the reactivity of the alloy. Cu atoms do not alter the attraction towards top-W sites felt by H2 molecules approaching the W(1 0 0) surface but make dissociation more difficult due to the rise of late activation barriers. This is mainly due to the strong decrease in the stability of the atomic adsorbed state on bridge sites, the most favourable ones for H adsorption on W(1 0 0). Still, our results show unambiguously that H2 dissociative adsorption on perfect terraces of the W(1 0 0)-c(2 × 2)Cu surface is a non-activated process which is consistent with the high sticking probability found in molecular beam experiments at low energies.  相似文献   

10.
The adsorption of carbon monoxide on the potassium modified Cu(1 1 5) surface was investigated using photoelectron spectroscopy based on synchrotron radiation. From detailed analysis of the 1s core levels in combination with existing knowledge, the assignment of surface species is performed. It is demonstrated that in dependence of the alkali coverage, several adsorption states of CO are present on the interface at 135 K. From the temperature dependence of the C 1s and O 1s profiles it is established that surface reactions based on CO dissociation start from 223 K over an interface with a potassium coverage close to half a complete K overlayer. The role of potassium as a reordering environment of adsorbed CO, leading to molecule dissociation and disproportionation is proposed. It is observed that a higher density of potassium on the substrate surface blocks adsorption sites for incoming CO molecules and no dissociation takes place.  相似文献   

11.
An X-ray photoelectron spectroscopy (XPS) study was undertaken of the water/Cu(1 1 0)-system finding non-dissociative adsorption on clean Cu(1 1 0) at temperatures below 150 K. Thermally induced dissociation of D2O is observed to occur above 150 K, similar to the H2O/Ru(0 0 1) system, with an experimentally derived activation barrier of 0.53-0.56 eV which is very close in magnitude to the derived activation barrier for desorption of 0.50-0.53 eV. X-ray and electron induced damage to the water overlayer was quantified and used to rationalize the results of a recent XPS study of the water/Cu(1 1 0)-system where partial dissociation was observed already at 90 K.  相似文献   

12.
Plane wave density functional theory has been employed to analyze the structure of alanine adlayers on the Cu(1 1 0) surface. Alanine forms (3 × 2) adlayers on Cu(1 1 0) that are closely related to the structures of glycine on the same surface. There is essentially no energy difference between the most stable racemic and enantiopure alanine adlayers. This observation implies that adsorption of racemic alanine on Cu(1 1 0) will result in a pseudoracemate adlayer.  相似文献   

13.
Jaewu Choi 《Surface science》2006,600(15):2997-3002
Photoemission results indicate that the initial adsorption of cobaltocene on Cu(1 1 1) at 150 K leads to molecular fragmentation, but with subsequent cobaltocene exposures, molecular absorption occurs. The molecularly adsorbed species is either adsorbed with only a fraction of molecules adopting a preferential orientation along the surface normal or adsorbed with the molecular axis away from the surface normal. This adsorption behavior is compared to nickelocene and ferrocene adsorption.  相似文献   

14.
A. Politano 《Surface science》2007,601(13):2656-2659
The electronic properties of thin films of Na on Cu(1 1 1) and their interaction with water have been investigated at room temperature by high resolution electron energy loss spectroscopy. The first Na layer is characterized by two features tentatively assigned to charge density waves. The second Na layer grows as small islands. The loss spectrum of this layer shows a feature at 3.0 eV identified as a Mie resonance. Increasing alkali coverage, Na islands form a continuous film, as indicated by the appearance of a Na surface plasmon and by the disappearance of the Mie resonance. Water vapour strongly interacts with Na layers as shown by the OH-Na vibration whose frequency shifts from 36 meV to 53 meV as a function of alkali coverage.  相似文献   

15.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

16.
The influence of the Cu capping layer thickness on the spin pumping effect in ultrathin epitaxial Co and Ni films on Cu(0 0 1) was investigated by in situ ultrahigh vacuum ferromagnetic resonance. A pronounced increase in the linewidth is observed at the onset of spin pumping for capping layer thicknesses dCu larger than 5 ML, saturating at dCu = 20 ML for both systems. The spin mixing conductance for Co/Cu and Ni/Cu interfaces was evaluated.  相似文献   

17.
The temperature dependence of the reflection anisotropy spectroscopy (RAS) of a Cu(1 1 0) surface has been studied over the temperature range 700-1000 K. Because of the roughening transition at 900 K, the bimodal feature at 4.2 eV for a clean surface shifted to 4.3 eV on annealing. A significant decrease in intensity of the same energy level was also observed with increasing annealing temperature. In the annealing temperature range 700-1000 K, anharmonic behavior is expected to be the predominant process of atomic disordering at the surface. Changes in the RAS of Cu(1 1 0) as a result of thermal processing can be understood in terms of the associated changes in surface states. The RAS signal for a surface resonance transition at 4.2 eV is associated with monoatomic [0 0 1] steps.  相似文献   

18.
Surface adsorbates induce strong local perturbations in the electronic structure and potentials in their surroundings. Consequently, charge transfer processes between projectiles and adsorbate-covered surfaces are strongly affected. The theoretical calculations and experiment measurements reported herein are focused on the H/Na/Cu(1 1 1) system. The electron dynamics at the Na/Cu(1 1 1) surface and the influence of Na adsorbates on the H-Cu(1 1 1) charge transfer are treated and discussed in detail. The ion fractions are mainly influenced by the ion exit trajectories. At low Na coverage, they exhibit a maximum near the 60° exit angle from surface. The calculations and experimental data are in good agreement.  相似文献   

19.
The adsorption of CN on Cu(1 1 1), Ni(1 1 1) and Ni(1 0 0) has been investigated using density functional theory (DFT). While experimental studies of CN on Cu(1 1 1) show the molecular axis to be essentially parallel to the surface, the normally-preferred DFT approach using the generalised gradient approximation (GGA) yields a lowest energy configuration with the C-N axis perpendicular to the surface, although calculations using the local density approximation (LDA) do indicate that the experimental geometry is energetically favoured. The same conclusions are found for CN on Ni(1 1 1); on both surfaces bonding through the N atom is always unfavourable, in contrast to some earlier published results of ab initio calculations for Ni(1 1 1)/CN and Ni(1 0 0)/CN. The different predictions of the GGA and LDA approaches may lie in subtly different relative energies of the CN 5σ and 1π orbitals, a situation somewhat similar to that for CO adsorbed on Pt(1 1 1) which has proved challenging for DFT calculations. On Ni(1 0 0) GGA calculations favour a lying-down species in a hollow site in a geometry rather similar to that found experimentally and in GGA calculations for CN on Ni(1 1 0).  相似文献   

20.
Reflection-absorption infrared spectroscopy (RAIRS) has been used to characterise the interaction of standard and fully deuterated glycine with Cu(1 0 0) and Cu(1 1 1). RAIRS shows clearly that the surface interaction leads to formation of the adsorbed deprotonated glycinate (NH2CH2COO-) species, with some evidence for changes in orientation with coverage previously seen on Cu(1 1 0). Qualitative low energy electron diffraction observations were also conducted to characterise the long-range ordering, although effects of electron-beam-induced radiation damage limited the information obtained. Nevertheless, the results do suggest some subtle isotopic-mass-related structural variations. The results are discussed in the context of previously published scanning tunnelling microscopy and photoelectron diffraction measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号