首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The indirect energy gap and electrical resistivity of FeS2-pyrite have been measured at high pressures and 300 K using optical absorption spectroscopy and electrical conductivity measurements. Absorption spectra extend to ∼28 GPa, while resistivity is determined to ∼34 GPa. The band gap of FeS2 is indirect throughout this pressure range and decreases linearly with pressure at a rate of −1.13(9)×10−2 eV/GPa. If this linear trend continues, FeS2 is expected to metallize at a pressure of 80(±8) GPa. The logarithm of resistivity also linearly decreases with pressure to 14 GPa with a slope of −0.101(±0.001)/GPa. However, between 14 and 34 GPa, the logarithm of resistivity is nearly constant, with a slope of −0.011(±0.003)/GPa. The measured resistivity of pyrite may be generated predominantly by extrinsic effects.  相似文献   

2.
The dielectric properties of the [4-NH2C5H4NH] SbCl4 (abbreviated as 4-APCA) crystal were investigated under hydrostatic pressure up to 300 Mpa. The pressure-temperature phase diagram was given. The paraelectric-ferroelectric phase transition (II→III) temperature (Tc) increases linearly with increasing pressure with a slope dTc/dp=21×10−2 K/MPa. The pressure dependence of Curie-Weiss constants has been evaluated also. In the paraelectric phase (II) the Curie constant (C+) was pressure dependent whereas the C constant over the ferroelectric phase (III) was almost constant. The results are interpreted in terms of improper and displacive type phase transition model with a soft phonon at a zone boundary.  相似文献   

3.
Crystallization in the melt-quenched (MQ) and mechanically milled (MM) superionic systems has been thoroughly investigated using differential scanning calorimetry, X-ray diffraction and electrical conductivity measurements. It is observed that the two systems obey different crystallization processes. The conventionally melt-quenched samples exhibit only one crystallization peak near 112 °C, whereas, the mechanochemically synthesized samples show two well-separated crystallization peaks at Tcl∼75-97 °C and Tc2∼132±2 °C. The higher value of electrical conductivity in the mechanochemically synthesized samples (∼10−2 Ω−1 cm−1 at 300 K) than the melt-quenched samples is attributed to the higher value of disorder (entropy) in the former.  相似文献   

4.
In order to elucidate the anisotropic pressure effect on superconductivity in an iron-based superconductor, magnetization measurements have been performed in Ba(Fe0.92Co0.08)2As2 single crystals under uniaxial pressures applied along the c-axis. Gigantic Tc suppression, dTc/dP//c = −15 K/GPa, was observed when the anisotropic deformation with the a-expansion and c-compression was induced by the c-pressure, which should be compared with dTc/dP < +1 K/GPa in the isotropic pressure case. This suggests that the a-axis (c-axis) compression has a positive (negative) contribution to Tc.  相似文献   

5.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

6.
We carefully studied the nonsuperconducting sample of the magneto-superconducting RuSr2(Eu1−xCex)Cu2O10−δ series with composition RuSr2EuCeCu2O10−δ. This compound seems to exhibit a complex magnetic state as revealed by host of techniques like resistivity, thermopower, magnetic susceptibility, and MR measurements. The studied compound exhibited ferromagnetic like M(H) loops at 5, 20, and 50 K, and semiconductor like electrical conduction down to 5 K, with −MR7 T of up to 4% at low temperatures. The −MR7 T decreases fast above 150 K and monotonically becomes close to zero above say 230 K. Below, 150 K −MR7 T decreases to around 3% monotonically down to 75 K, with further increase to 4% at around 30 K and lastly having a slight decrease below this temperature. The thermopower S(T) behavior closely followed the −MR7 T steps in terms of d(S/T)/dT slopes. Further, both MR7 T steps and d(S/T)/dT slopes are found in close vicinity to various magnetic ordering temperatures (Tmag) of this compound.  相似文献   

7.
In situ high-pressure angle dispersive synchrotron X-ray diffraction studies of molybdenum diselenide (MoSe2) were carried out in a diamond-anvil cell to 35.9 GPa. No evidence of a phase transformation was observed in the pressure range. By fitting the pressure-volume data to the third-order Birch-Murnaghan equation of state, the bulk modulus, K0T, was determined to be 45.7±0.3 GPa with its pressure derivative, K0T, being 11.6±0.1. It was found that the c-axis decreased linearly with pressure at a slope of −0.1593 when pressures were lower than 10 GPa. It showed different linear decrease with the slope of a −0.0236 at pressures higher than 10 GPa.  相似文献   

8.
Electrical conduction and crystal structure of Al2(WO4)3 at 400 °C have been studied as a function of pressure up to 5.5 GPa using impedance methods and synchrotron radiation X-ray diffraction, respectively. AC impedance spectroscopy and DC polarization measurements reveal an ionic to electronic dominant transition in electrical conductivity at a pressure as low as 0.9 GPa. Conductivity increases with pressure and reaches a maximum at 4.0 GPa, where the conductivity value is 5 orders of magnitude greater than the 1 atm value. Upon decompression, the conductivity retains the maximum value until the sample is cooled at 0.5 GPa. The high pressure-temperature X-ray diffraction results show that the lattice parameters decrease as pressure increases and the crystal structure undergoes an orthorhombic to tetragonal-like transformation at a pressure ∼3.0 GPa. The change of conduction mechanism from ionic to electronic may be explained by means of pressure-induced valence change of W6+→W5+, which results in electron transfer between W5+-W6+ sites at high pressure.  相似文献   

9.
The electrical property of a KTiOPO4 single crystal was studied by means of a dielectric spectroscopy method in the temperature range from −100 to 100 °C. Dielectric dispersion began at a temperature, TS=−80 °C. It is believed that this dielectric dispersion is related to the ionic hopping conduction, which arises mainly from the jumping of K+ ions. The activation energy concerned with hopping conduction is Ea∼0.20 eV above TS. TS=−80 °C can be the minimum temperature for the hopping K+ ion.  相似文献   

10.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

11.
The crystal structure of SmFeAs(O0.93F0.07) has been investigated under high pressure (up to ∼9 GPa) by means of synchrotron powder diffraction analysis followed by Rietveld refinement. The bulk modulus was calculated (K0 = 103 GPa) using a 3rd order Birch–Murnaghan equation of state and resulted in quite good agreement with theoretical calculations reported for LaFeAsO. The linear compressibilities βa and βc are 2.11(4) and 4.56(7) × 10−3 GPa−1, respectively.  相似文献   

12.
High-pressure resistivity and X-ray diffraction measurements were conducted on La0.85MnO3−δ at ∼6 and ∼7 GPa, respectively. At low pressures the metal-insulator transition temperature (TMI) increases linearly up to a critical pressure, P* ∼3.4 GPa, followed by reduction in TMI at higher pressure. Analysis of the bond distances and bond angles reveals that a bandwidth increase drives the increase in TMI below P*. The reduction in TMI at higher pressures is found to result from Jahn-Teller distortions of the MnO6 octahedra. The role of anharmonic interatomic potentials is discussed.  相似文献   

13.
The effects of hydrostatic pressure and substitution of Rb+for the ammonium cations on the ferroelectric phase transition temperature in NH4H(ClH2CCOO)2 have been studied by electric permittivity measurements. The transition temperature (Tc) decreases with increasing pressure up to 800 MPa and the pressure coefficient dTc/dp=−1.4×10−2 [K/MPa] has been experimentally determined. The substitution of Rb+ for the ammonium cations has been shown to considerably lower the ferroelectric phase transition temperature Tc. In mixed crystals, additional electric permittivity anomaly has been clearly evidenced. The results are discussed assuming a model, which combines polarizability effects, related to the heavy ion units, with the pseudo-spin tunnelling.  相似文献   

14.
Transport properties and non-stoichiometry of La1−xCaxW1/6O2 and La1−yW1/6O2 (x=0, 0.005, 0.05; y=0.05, 0.1) have been characterized by means of impedance spectroscopy, the EMF-technique, H+/D+ isotope exchange, and thermogravimetry in the temperature range 300-1200 °C as a function of oxygen partial pressure and water vapor partial pressure. The materials exhibit mixed ionic and electronic conductivities; n- and p-type electronic conduction predominate at high temperatures under reducing and oxidizing conditions, respectively. Protons are the major ionic charge carrier under wet conditions and predominates the conductivity below ∼750 °C. The maximum in proton conductivity is observed for LaW1/6O2 with values reaching 3×10−3 S/cm at approximately 800 °C. The high proton conductivity for the undoped material is explained by assuming interaction between water vapor and intrinsic (anti-Frenkel) oxygen vacancies.  相似文献   

15.
At pressure 1.0-4.0 GPa and temperature 1073-1423 K and under the control of oxygen fugacity (Mo+MoO2, Fe+FeO and Ni+NiO), a YJ-3000t multi-anvil solid high-temperature and high-pressure apparatus and Solartron-1260 impedance/Gain-Phase analyzer were employed to analyze the electrical conductivity of lherzolite. The experimental results showed that: (1) within the range of the selected frequencies (103-106 Hz), either as viewed from the relationship between the real or imaginary part of complex impedance and the frequency, or from the relationship between modulus, phase angle and frequency, it can be seen clearly that the complex impedance has a strong dependence on frequency; (2) with the rise of temperature (T), the electrical conductivity (σ) increased, and Lg σ and 1/T follows the Arrhenius relationship; (3) with the rise of pressure, the electrical conductivity decreased, and activation enthalpy and temperature-independent pre-exponential factor decreased as well. And the activation energy and activation bulk volume of the main charge carrier in the lherzolite have been obtained for the first time, which are 1.68±0.02 eV and 0.04±0.01 cm3/mol, respectively; (4) under the given pressure and temperature, the electrical conductivity tends to increase with increasing oxygen fugacity, and under the given pressure, the activation enthalpy and pre-exponential factor tend to decrease with the rise of oxygen fugacity; (5) at 2.0 GPa and the control of the three solid buffers, Mo+MoO2, Fe+FeO and Ni+NiO, the exponential factors of electrical conductivity variation range with oxygen fugacity are , and the theoretical model for the relationship between the electrical conductivity of lherzolite and the oxygen fugacity under high pressure has been established for the first time; (6) the electrical conduction mechanism of small polarons provides a reasonable explanation to the variation of conductivity of lherzolite with oxygen fugacity.  相似文献   

16.
High saturation magnetization soft magnetic FeCo (=Fe65Co35) films were prepared using a thin Co underlayer. The FeCo/Co films exhibited a well-defined in-plane uniaxial anisotropy with easy axis coercivity (Hce) of 10 Oe and hard axis coercivity (Hch) of 3 Oe, and a half reduction of Hc with Hce=4.8 Oe and Hch=1.0 Oe was obtained when the composition was adjusted to 25 at% Co. The effective permeability of the films remains flat around 250 to 800 MHz. The saturation magnetostriction was 5.2×10−5 and the intrinsic stress was 0.8 GPa in FeCo single layer, both were slightly reduced by Co underlayer. The Co underlayer changed the preferred orientation of the FeCo films from (2 0 0) to (1 1 0) but more significantly, reduced the average grain size from ∼74 to ∼8.2 nm. It also reduced the surface roughness from 2.351 to 0.751 nm. The initial stage and interface diffusion properties were examined by TEM and XPS.  相似文献   

17.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

18.
Phase transitions in CsHSO4 at pressures up to 2.5 GPa have been studied with the help of electrical impedance measurements. The phase boundaries have been identified with the help of calculated activation energies of electrical conductivity and dielectric relaxation time. The derived temperatures of phase transition from the low conductive phase II into super ionic phase I at pressure less than 1 GPa confirm the previous results of Ponyatovski? et al. (1985) [4] and Friesel et al. (1989) [27]. The phase diagram derived in this study for pressure larger than 1 GPa differs from the data of Ponyatovski? et al. (1985) [4]. The phase transitions IV-VI and VI-I occur at higher temperatures having significantly larger Clapeyron slope. The phase VII was not identified from heating cycle and appears only under cooling between phases I and VI. The phase VIII was detected at 2.5 GPa at T<350 K and only during heating.  相似文献   

19.
We report the influence of external high-pressure (P up to 8 GPa) on the temperature (T) dependence of electrical resistivity (ρ) of a Yb-based Kondo lattice, YbPd2Si2, which does not undergo magnetic ordering under ambient pressure condition. There are qualitative changes in the ρ(T) behavior due to the application of external pressure. While ρ is found to vary quadratically below 15 K (down to 45 mK) characteristic of Fermi-liquids, a drop is observed below 0.5 K for P=1 GPa, signaling the onset of magnetic ordering of Yb ions with the application of P. The T at which this fall occurs goes through a peak as a function of P (8 K for P=2 GPa and about 5 K at high pressures), mimicking Doniach's magnetic phase diagram. We infer that this compound is one of the very few Yb-based stoichiometric materials, in which one can traverse from valence fluctuation to magnetic ordering by the application of external pressure.  相似文献   

20.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号