首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic and magneto-transport behaviors of magnetic tunnel junctions (MTJs) incorporating newly developed amorphous NiFeSiB and CoFeSiB as free layers were investigated. Both experimental and theoretical approaches were carried out to understand the details of switching characteristics. The MTJs with traditional free layer materials such as NiFe and CoFe were also fabricated and compared. The studied amorphous ferromagnets appeared beneficial for reducing switching fields without loosing tunnelling magnetoresistive outputs. Further layer thickness, composition, and MTJ structure optimization are expected.  相似文献   

2.
Magnetic tunnel junctions (MTJs) comprising amorphous Co70.5Fe4.5Si15B10, possessing low saturation magnetization of 560 emu/cm3, as a free layer have been investigated. The switching behaviours were confirmed for the micrometer-sized elements experimentally, using the scanning magneto-optical Kerr effect (scanning MOKE). A micromagnetic modelling study was also carried out for the submicrometer-sized elements. By using either a CoFeSiB single or a synthetic antiferromagnetic free-layer structure, the magnetization switching field became much lower than conventionally used CoFe free layered MTJs.  相似文献   

3.
Ultrathin Fe films have been epitaxially grown at room temperature on standard single crystal Ge(0 0 1) substrates and virtual Ge/Si(0 0 1) substrates. Their magnetic and electronic properties have been investigated in situ by spin polarized inverse photoemission and magneto-optical Kerr effect. In both cases, the onset of ferromagnetism appears definitively at 3 ML, and the overall behavior is very similar in the case of standard and virtual substrates, so that the latter can be employed for growing high quality Fe/Ge/Si interfaces. All the films investigated display uniaxial anisotropy, which is explained in terms of the surface morphology induced by the preparation conditions.  相似文献   

4.
研究发现在磁隧道结的反铁磁层和被钉扎铁磁层之间插入一层纳米氧化层,可以使磁隧道结的退火温度增加了40℃,即明显地提高了磁隧道结的温度稳定性.通过卢瑟福背散射实验直接观察到产生这一效应的原因是该纳米氧化层有效地抑制了Mn元素在退火过程中的扩散,从而使TMR值在较高的退火温度下得以保持. 关键词: 磁性隧道结 隧穿磁电阻 热稳定性 纳米氧化层  相似文献   

5.
By means of the nonequilibrium Green function technique, the effect of spin-flip scatterings on the spin-dependent electrical transport in ferromagnet–insulator–ferromagnet (FM–I–FM) tunnel junctions is investigated. It is shown that Jullière's formula for the tunnel conductance must be modified when including the contribution from the spin-flip scatterings. It is found that the spin-flip scatterings could lead to an angular shift of the tunnel conductance, giving rise to the junction resistance not being the largest when the orientations of magnetizations in the two FM electrodes are antiparallel, which may offer an alternative explanation for such a phenomenon observed previously in experiments in some FM–I–FM junctions. The spin-flip assisted tunneling is also observed.  相似文献   

6.
The effect of a Mg insertion layer between the Fe electrode and the MgO barrier layer on the electronic structure and magnetic properties of Fe/MgO/Fe magnetic tunnel junction has been studied by first-principle method. Two models of (a) Fe(1 0 0)/MgO(1 0 0)/Fe(1 0 0) and (b) Fe(1 0 0)/Mg/MgO(1 0 0)/Mg/Fe(1 0 0) were established. Our calculation results show that the Mg insertion layer has enhanced both the spin polarization and the magnetic moment of its adjacent Fe layer. The results have been discussed in terms of the variation in the DOS features and charge transfer with the Mg insertion layer.  相似文献   

7.
MgO-based magnetic tunnel junctions (MTJs) with a layer sequence Ir22Mn78 or Fe50Mn50 (10 nm)/CoFe (2 nm)/Ru (0.85 nm)/CoFeB (0.5?t<2 nm)/MgO (2.5 nm)/CoFeB (3 nm) have been fabricated. The bias voltage dependence of tunneling magnetoresistance (TMR) is given as a function of the annealing temperature for these MTJs, which shows the TMR ratio changes its sign from inverted to normal at a critical bias voltage (VC) when an unbalanced synthetic antiferromagnetic stack CoFe/Ru/CoFeB is used. VCs change with the thickness of the pinned CoFeB and annealing temperature, which implies one can achieve different VCs by artificial control. The asymmetric VC values suggest that a strong density-of-states modification occurs at bottom oxide/ferromagnet interface.  相似文献   

8.
New approach to spin dynamics simulation in magnetic system is presented. In the approach, we substitute new algorithm for Landau-Lifshitz-Gilbert dynamics, which enable us to achieve the final stable state of magnetic system much faster than traditional spin dynamics simulation. A square-shaped sample with 32×32×4 size under different conditions is calculated. Our results show the new approach can largely reduce the computational time.  相似文献   

9.
Heusler alloys are considered as interesting ferromagnetic electrode materials for magnetic tunnel junctions, because of their high spin polarization. We, therefore, investigated the micromagnetic properties in a prototypical thin film system comprising two different Heusler phases Co2MnSi (CMS) and Co2FeSi (CFS) separated by a MgO barrier. The magnetic microstructure was investigated by X-ray photoemission electron microscopy (XPEEM). We find a strong influence of the Heusler phase formation process on the magnetic domain patterns. SiO2/V/CMS/MgO/CFS and SiO2/V/CFS/MgO/CMS trilayer structures exhibit a strikingly different magnetic behavior, which is due to pinhole coupling through the MgO barrier and a strong thickness dependence of the magnetic ordering in Co2MnSi.  相似文献   

10.
Results on the investigation of the magnetic properties of nanocrystalline Co/Ni/Fe and Fe/Zr/Fe thin-film systems are presented. The study of the magnetic properties of the examined samples was carried out employing magneto-optical micromagnetometer with a surface sensitivity about of 20 nm of the thickness depth and a vibrating sample magnetometer. The examined samples were revealed to exhibit hysteresis loops of complicated forms. These data were explained by the magnetostatic and exchange interactions between the layers in heterogeneous magnetic materials.  相似文献   

11.
We study the properties of heterostructures formed by two layers of a diluted magnetic semiconductor separated by a nonmagnetic semiconductor layer. We find that there is a RKKY-type exchange coupling between the magnetic layers that oscillates between ferromagnetic and antiferromagnetic as a function of the different parameters in the problem. The different transport properties of these phases make that this heterostructure presents strong magnetoresistive effects. The coupling can be also modified by an electric field. We propose that it is possible to alter dramatically the electrical resistance of the heterostructure by applying an electric field. Our results indicate that in a single gated sample the magnetoresistance could be modulated by an electrical bias voltage.  相似文献   

12.
Magneto-optic (MO) effects in magnetic multilayers with periodic regions are discussed assuming normal incidence of polarized waves and polar magnetization (Faraday and polar Kerr effects). From the (4 × 4)-matrix formalism simplified analytical expressions linear in the off-diagonal permittivity tensor element are obtained with no loss in accuracy. The MO effects are expressed as weighted sums of contributions from individual layers. Approximate expressions are given for the case when the thickness of magnetic layers is much smaller than the radiation wavelength. The procedure is illustrated on superlattices consisting of symmetric sandwiches of ultrathin magnetic and non-magnetic metallic layers. Partial support from the Grant Agency of Czech Republic # 202/00/0761 is acknowledged.  相似文献   

13.
The coercivity of a Co/Pt multilayer with out-of-plane anisotropy can be lowered greatly if it is grown onto an ultrathin NiO underlayer . By making use of this characteristic, a series of samples glass/NiO(10 Å)/[Co(4 Å)/Pt(5 Å)]3/Pt(x Å)/[Co(4 Å)/Pt(5 Å)]3 with different Pt spacer thickness have been prepared to determine the ferromagnetic (FM) coupling between Co layers across the Pt layer. The measurements of major and minor hysteresis loops have shown that the FM coupling between the top and bottom Co/Pt multilayers decreases monotonically with the Pt layer thickness and disappears above the Pt layer thickness of 40 Å. This thickness of 40 Å is much larger than that in the literature. In addition to the FM coupling between the top and bottom Co/Pt multilayers across the Pt spacer, there exists a weak biquadratic coupling, which induces the broad transition of the bottom Co/Pt multilayer.  相似文献   

14.
The controlled fabrication method for nano-scale double barrier magnetic tunnel junctions (DBMTJs) with the layer structure of Ta(5)/Cu(10)/Ni79Fe21(5)/Ir22Mn78(12)/Co60Fe20B20(4)/Al(1)–oxide/Co60Fe20B20(6)/Al(1)–oxide/Co60Fe20B20(4)/Ir22Mn78(12)/Ni79Fe21(5)/Ta(5) (thickness unit: nm) was used. This method involved depositing thin multi-layer stacks by sputtering system, and depositing a Pt nano-pillar using a focused ion beam which acted both as a top contact and as an etching mask. The advantages of this process over the traditional process using e-beam and optical lithography in that it involve only few processing steps, e.g. it does not involve any lift-off steps. In order to evaluate the nanofabrication techniques, the DBMTJs with the dimensions of 200 nm×400 nm, 200 nm×200 nm nano-scale were prepared and their RH, IV characteristics were measured.  相似文献   

15.
Ta/NiOx/Ni81Fe19/Ta films were prepared by rf reactive and dc magnetron sputtering. The exchange coupling field Hex and the coercivity Hc of NiOx/Ni81Fe19 as a function of the ratio of Ar to O2 during the deposition process were studied. The composition and the chemical states in the interface region of NiOx/NiFe were also investigated using X-ray photoelectron spectroscopy (XPS) and the peak decomposition technique. The results show that the ratio of Ar to O2 has a great effect on the chemical states of nickel in NiOx films. The exchange coupling field Hex and the coercivity Hc of Ta/NiOx/Ni81Fe19/Ta are thus seriously affected. XPS is shown to be a powerful tool for characterizing magnetic films. Received: 18 July 2001 / Accepted: 21 December 2001 / Published online: 3 June 2002 RID="*" ID="*"Corresponding author. Fax: +86-010/6232-7283, E-mail: guanghua_yu@263.net  相似文献   

16.
We have investigated the magnetic properties of trilayer films of Co–Ge–Co. At a fixed thickness of germanium of 3.5 nm, the formation and distribution of metastable amorphous and cubic phases depends on the thickness of the ferromagnetic layer. The portion of the stable hexagonal phase is affected, too. Possible mechanisms for forming the observed magnetic structure are discussed.  相似文献   

17.
18.
It has been demonstrated that He+ ion irradiation is an excellent tool for modifying magnetic properties, like the magnetic anisotropy, the interlayer exchange coupling strength and the exchange bias field of ultra-thin magnetic layered systems. This paper summarizes the effects of ion irradiation on exchange bias systems. As a first example, for possible applications of the ion induced magnetic effects, the realization of an angle sensing device is described. Received: 11 November 2002 / Accepted: 12 November 2002 / Published online: 4 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-631-205-4095, E-mail: fassbend@physik.uni-kl.de RID="**" ID="**"Present address: Université de Rouen, Rouen, France  相似文献   

19.
The electronic structure and magnetic properties of the Co at the Co/X (X=Co, Cu, V and Ta) interfaces have been studied by first-principle discrete variational method. We have found that the spin asymmetry and the s-electron itinerancy of the Co interface layer in the Co/X systems are strongly dependent on the electronegativity of the non-magnetic layers. A large difference in the electronegativity between the non-magnetic and Co layers is unfavorable both for s-electron itinerancy and for the spin exchange split of DOS at the Fermi level. Further study on charge density has revealed that a bond is formed across the Co/V and Co/Ta interfaces.  相似文献   

20.
The present work discusses the successful electrodeposition of Cu/Co multilayers, exhibiting appreciable GMR of 12-14% at room temperature. The effect of individual Cu and Co layers on the magnitude and behavior of GMR has been studied. By varying the thickness of individual layers the field at which saturation in GMR is observed can be controlled. It was observed that for lower thicknesses of Co layer, the saturation fields are reduced below 1 kOe. The Cu layer thickness seems to control the nature of magnetic coupling and the saturation field, with the two showing a correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号