首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we present the spectral results of Dy3+ and Pr3+ (1.0 mol%) ions doped Bi2O3-ZnF2-B2O3-Li2O-Na2O glasses. Measurements of X-ray diffraction (XRD), differential scanning calorimetry (DSC) profiles of these rare-earth ions doped glasses have been carried out. From the DSC thermograms, glass transition (Tg), crystallization (Tc) and melting (Tm) temperatures have been evaluated. The direct and indirect optical band gaps have been calculated based on the glasses UV absorption spectra. The emission spectrum of Dy3+:glass has shown two emission transitions 4F7/26H15/2 (482 nm) and 4F7/26H13/2 (576 nm) with an excitation at 390 nm wavelength and Pr3+:glass has shown a strong emission transition 1D23H4 (610 nm) with an excitation at 445 nm. Upon exposure to UV radiation, Dy3+ and Pr3+ glasses have shown bright yellow and reddish colors, respectively, from their surfaces.  相似文献   

2.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

3.
This paper reports the spectral properties of Nd3+:Ca2Nb2O7. The spectral parameters of Nd3+ in Nd3+:Ca2Nb2O7 crystal have been investigated based on Judd-Ofelt theory. The spectral parameters were obtained. The parameters of line strengths Ωλ are Ω2=4.967×10−20 cm2, Ω4=5.431×10−20 cm2, Ω6=5.693×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 122 μs, 103 μs and 84.4%, respectively. The fluorescence branch ratios calculated: β1=0.425, β2=0.479, β3=0.091, β4=0.004. The emission cross section at 1068 nm is 6.204×10−20 cm2.  相似文献   

4.
Structural and optical properties of ZnGa2O4:Ge4+ and ZnGa2O4:Ge4+, Li+, Mn2+ phosphors were investigated by using X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL) measurements. The XRD patterns show that Ge-doped ZnGa2O4 has a spinel phase and its lattice constant increases with respect to ZnGa2O4. Emission wavelength shifts from 400 to 360 nm in comparison with ZnGa2O4 when Ge is doped in ZnGa2O4 and a peak related with oxygen defect was observed in Ge-doped ZnGa2O4. The CL luminance of ZnGa2O4:Ge4+, Li+, Mn2+ phosphors is seven times brighter than that of ZnGa2O4:Mn2+. This drastic luminance improvement can be attributed to Ge doping in ZnGa2O4 acting as donor ion and Li doping resulting in increasing conductivity of ZnGa2O4. These results indicate that ZnGa2O4:Ge4+, Li+, Mn2+ phosphors hold promise for potential applications in field-emission display devices with high brightness operating in green spectral regions.  相似文献   

5.
Optical absorption, thermoluminescence, infrared spectra and differential thermal analysis of three different tellurite glass systems viz., ZnF2-As2O3-TeO2, ZnF2-Bi2O3-TeO2 and ZnF2-P2O5-TeO2 containing 0.4% of Cr2O3, have been investigated. Results have been analysed in the light of different oxidation states of chromium ion and the most suitable host for lasing Cr3+ ions has been identified and reported.  相似文献   

6.
Photoluminescence of undoped and Cr3+-doped β-Ga2O3 was investigated. The transparent, undoped β-Ga2O3 film was successfully prepared by thermal conversion from GaOOH. The film exhibited predominant green luminescence in response to ultraviolet light excitation at 250 nm. This luminescence behavior, which was proposed to result from the oxygen defect centers, was used in examining excitation and emission mechanisms for Cr3+ ions doped in β-Ga2O3. It was found that red luminescence of Cr3+ surpasses green luminescence of the host lattice, as evidenced by the dependence of the spectral structure on the Cr3+ concentration. The excitation of Cr3+ was then suggested to be caused by the energy transfer from Ga3+O6 octahedra present in the monoclinic β-Ga2O3 lattice.  相似文献   

7.
The Ga-O octahedral structure of the reduced and the oxidized ZnGa2O4 phosphors was investigated using Reitveld refinement. The correlation between the structural change and the changing emission color was studied. The emission peak shifts to shorter wavelength because of the more contribution of a variation of ligand charge than that of bond length to crystal field. The blueshift behavior of the reduced ZnGa2O4 was also observed in Ge4+-doped ZnGa2O4. In addition, Li+ ions doping in ZnGa2O4 generate extra oxygen ions, and Li+-doped ZnGa2O4 shows the same emission color as the oxidized ZnGa2O4.  相似文献   

8.
ZnO-CdO-TeO2 was employed as a host of Tb3+ and Yb3+ ions. The matrix doped with Tb3+ presents a crystalline/amorphous structure, while the same matrix shows an amorphous structure when it is doped with Yb3+. Optical absorption spectra, measured by using photoacoustic (PA) spectroscopy, allowed to determine the band gap, which is localized in the range 3.47-3.60 eV. Both kinds of ions Tb3+ and Yb3+ in the ZnO-CdO-TeO2 matrix show emissions that are characteristic of such ions. For Tb3+ the signals were allocated in 548, 586, 622 nm, respectively, while for Yb3+ only one signal was registered at 1000 nm.  相似文献   

9.
Lead-Cadmium fluorosilicate stable glasses were prepared and the vitreous domain region determined in the composition diagram. Characteristic temperatures were obtained from thermal analysis and the structural studies performed illustrate clearly the role played by lead atoms in the glasses crystallization behavior and the glass-forming ability of cadmium atoms. The occurrence of either a cubic lead fluoride or a lead-cadmium fluoride solid solution in crystallizing samples was found to be dependent on Er3+ doping. The optically active ions were found to concentrate in the crystalline phase and in fact play the role of nucleating agent as suggested from X-ray diffraction and EXAFS measurements.  相似文献   

10.
Yb3+-doped La2(WO4)3 single crystals were grown by the Czochralski technique. Absorption and fluorescence spectra of the crystal were recorded at the room temperature. The stimulated emission cross-sections of Yb3+ ions were calculated using the reciprocity method and Fuchtbauer-Ladenburg formula, respectively. The fluorescence decay curves of 2F5/2 manifold of Yb3+ ions were recorded at room temperature for both crystal and powder samples. The effect of radiation trapping on the spectroscopic properties is discussed. Comparison with other Yb3+-doped laser crystals is made. The results show that Yb3+:La2(WO4)3 crystal is a promising laser material.  相似文献   

11.
ZnO-ZnF2-B2O3 glasses containing small concentrations of TiO2 ranging from 0 to 0.6 mol% were prepared. Dielectric properties (constant ε′, loss tan δ, ac conductivity σac over a moderately wide range of frequency and temperature at room temperature in air medium) of these glasses have been studied. The results of these studies were analyzed with the aid of data on optical absorption, ESR and IR spectra of these glasses. The analysis suggests that when the concentration of TiO2>0.2 mol%, the titanium ions, in addition to Ti4+ state, co-exist in Ti3+ state, act as modifiers and reduce the breakdown strength.  相似文献   

12.
Transparent Er3+-doped bulk nanocrystallized (size of nanocrystals: ∼40 nm) glasses of 15K2O·15Nb2O5·70TeO2·0.5Er2O3 and 10BaO·10Gd2O3·80TeO2·0.5Er2O3 are prepared, and the Judd-Ofelt parameters, (t=2, 4, 6), of Er3+ are evaluated from optical absorption spectra. The change in the molar polarizability due to the nanocrystallization is small in both samples, but a clear decrease in the mean atomic volume due to the nanocrystallization, i.e. more close atom packing, is observed. In both systems, a large decrease is observed in the parameter due to the nanocrystallization, indicating that the degree of the site symmetry of Er3+ ions in nanocrystallized glasses is much higher than that in the precursor glasses. The decrease in the and parameters due to the crystallization is small, suggesting that the covalency of Er3+-O bonds in nanocrystals is not so different from that in the precursor glasses.  相似文献   

13.
The ZnGa2O4:Mn2+, Cr3+ phosphors show three colors; the blue band of 380 nm from the charge transfer between Ga-O, the green band of 505 nm from Mn2+ and the red band of 705 nm from Cr3+. As a variation of Mn2+ or Cr3+ concentrations in ZnGa2O4:Mn2+, Cr3+, the relative emission intensity can be tuned. This phenomenon is explained in terms of the energy transfer based on four factors: the spectral overlap between the energy donors (Ga-O) and the energy accepters of Mn2+ or Cr3+, the absorption cross section of the energy accepters, the distance between them, and the decay time of the energy donors. ZnGa2O4:0.0025Mn2+, 0.010Cr3+ shows the CIE coordinates of x=0.4014, y=0.3368, which is a pure white light. The single-phased full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors can be applied to illumination devices.  相似文献   

14.
We have studied the electronic structure of β-Ga2O3 using the first principles full-potential linearized augmented plane wave method. It is found that β-Ga2O3 has an indirect band gap with a conduction band minimum (CBM) at Γ point and a valence band maximum on the E line. The anisotropic optical properties are explained by the selection rule of the band-to-band transitions. On the other hand, the shape of the CBM is almost isotropic and, therefore, the observed electronic anisotropy in the n-type semiconducting state should not be attributed to the properties of a perfect lattice. The Burstein-Moss shift is discussed using the effect of several allowed transitions between the levels of the valence band and the CBM.  相似文献   

15.
NaLaP2O7 and NaGdP2O7 powder samples are prepared by solid-state reactions at 750 and 600 °C, respectively, and the VUV-excited luminescence properties of Ln3+ (Ln=Ce, Pr, Tb, Tm, Eu) in both diphosphates are studied. Ln3+ ions in both hosts show analogous luminescence. For Ce3+-doped samples, the five Ce3+ 5d levels can be clearly identified. As for Pr3+ and Tb3+-doped samples, strong 4f-5d absorption band around 172 nm is observed, which matches well with Xe-He excimer in plasma display panel (PDP) devices. As a result, Pr3+ can be utilized as sensitizer to absorb 172 nm VUV photon and transfer energy to appropriate activators, and Tb3+-doped NaREP2O7(RE=La, Gd) are potential 172 nm excited green PDP phosphors. For Tm3+ and Eu3+-doped samples, the Tm3+-O2− charge transfer band (CTB) is observed to be at 177 nm, but the CTB of Eu3+ is observed at abnormally low energy position, which might originate from multi-position of Eu3+ ions. The similarity in luminescence properties of Ln3+ in both hosts indicates certain structural resemblance of coordination environment of Ln3+ in the two sodium rare earth diphosphates.  相似文献   

16.
Er-Tm-codoped Al2O3 thin films with different Tm to Er concentration ratios were synthesized by cosputtering from separated Er, Tm, Si, and Al2O3 targets. The temperature dependence of photoluminescence (PL) spectra was studied. A flat and broad emission band was achieved in the 1.4-1.7 μm and the observed 1470, 1533 and 1800 nm emission bands were attributed to the transitions of Tm3+: 3H4 → 3F4, Er3+: 4I13/2 → 4I15/2 and Tm3+: 3F4 → 3H6, respectively. The temperature dependence is rather complicated. With increasing measuring temperature, the peak intensity related to Er3+ ions increases by a factor of five, while the Tm3+ PL intensity at 1800 nm decreases by one order of magnitude. This phenomenon is attributed to a complicated energy transfer (ET) processes involving both Er3+ and Tm3+ and increase of phonon-assisted ET rate with temperature as well. It should be helpful to fully understand ET processes between Er and Tm and achieve flat and broad emission band at different operating temperatures.  相似文献   

17.
Long-lasting afterglow due to Tb3+ ions has been observed in a Tb3+-doped SiO2-Ga2O3-CaO-Na2O glass, where a 4s empty orbital of Ga3+ probably works as an electron-trapping center. The sensitization effect of Yb3+ on the afterglow has been noticed.  相似文献   

18.
The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd3+:KGd(WO4)2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd3+:KGd(WO4)2 crystal was discussed.  相似文献   

19.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

20.
In this paper, the Ca2SnO4:Eu3+ phosphor was prepared by low-temperature sol-gel method. The influence of calcined temperature and time on structure of Ca2SnO4:Eu3+ was investigated by using X-ray powder diffraction (XRD). The experimental results show that the dried gel was crystallized to the pure orthorhombic phase after calcination at 900 °C in air for 6 h. These phosphors have displayed bright red color under a UV source. The richness of the red color has been verified by determining their color coordination from the CIE standard charts, and this red emission has been assigned to 5D07F2 electric dipole transition at 616 and 620 nm. The excellent luminescence properties make it possible as a good candidate for plasma display panel (PDP) application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号