首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The La0.8Sr0.2MnO3/ZnO heterostructures with different thicknesses of ZnO films are fabricated by using RF magnetron sputtering technique. The heterojunctions exhibit excellent rectifying properties at 300 K. At low temperatures the temperature dependent junction resistance exhibits a metal-insulator transition like behavior. A magnetic field strongly impacts on electrical characteristics of La0.8Sr0.2MnO3/ZnO p-n junctions, i.e., depressing the junction resistance greatly and driving the metal-insulator transition temperature (TMI) towards higher temperatures. Large magnetoresistance is observed below TMI, and it increases with increasing magnetic field and almost saturates at 5 T, i.e., above −90% at 100 K and 5 T.  相似文献   

2.
The La1.32Sr1.68Mn2O7 layered manganite system has been studied by the low temperature electrical resistance and magnetoresistance under hydrostatic pressure up to 25 kbar. We have observe both, a Curie temperature (TC) and a metal-insulator transition (TMI) at 118 K in the ambient pressure. The applied pressure shifts the TMI to higher temperature values and induces a second metal-insulator transition (T2MI) at 90 K, in the temperature dependence of resistivity measurements. Also, the pressure suppresses the peak resistance abruptly at TC. When an external field of 5 T is applied, we have observed a large negative magnetoresistance of 300% at the transition temperature and a 128% at 4.5 K. However, the increased pressure decreases the magnetoresistance ratio gradually. When the pressure reaches its maximum available value of 25 kbar, the magnetoresistance ratio decreases at a rate of 1.3%/kbar. From our experimental results, the decrease of magnetoresistance ratio with pressure is explained by the pressure induced canted spin state which is not favor for the spin polarized intergrain tunneling in layered manganites.  相似文献   

3.
李廷先  张铭  王光明  郭宏瑞  李扩社  严辉 《物理学报》2011,60(8):87501-087501
使用脉冲激光沉积技术,在LaAlO3(001)单晶基片上制备了La2/3Sr1/3MnO3(LSMO)/BaTiO3(BTO)双层薄膜.X射线衍射分析显示,LSMO层和BTO层呈现纯(001)取向.原子力显微镜研究表明,薄膜表面晶粒大小均匀,排列致密,表面均方根粗糙度为1.4 nm.复合薄膜的磁学、电学性能研究表明,其具有良好的磁学和介电性能.电输运测试显示,与在BTO层上施加正方向 关键词: 磁电效应 铁电/铁磁异质结构 脉冲激光沉积  相似文献   

4.
High-pressure resistivity and X-ray diffraction measurements were conducted on La0.85MnO3−δ at ∼6 and ∼7 GPa, respectively. At low pressures the metal-insulator transition temperature (TMI) increases linearly up to a critical pressure, P* ∼3.4 GPa, followed by reduction in TMI at higher pressure. Analysis of the bond distances and bond angles reveals that a bandwidth increase drives the increase in TMI below P*. The reduction in TMI at higher pressures is found to result from Jahn-Teller distortions of the MnO6 octahedra. The role of anharmonic interatomic potentials is discussed.  相似文献   

5.
VO2 thin films are grown on glass substrates by pulsed laser deposition using vanadium metal as a target. In this study, a ZnO thin film was used as a buffer layer for the growth of VO2 thin films on glass substrates. X-ray diffraction studies showed that the VO2 thin film had b-axis preferential orientation on a c-axis oriented ZnO buffer layer. The thickness of the ZnO buffer layer and the oxygen pressure during VO2 deposition were optimized to grow highly b-axis oriented VO2 thin films. The metal-insulator transition properties of the VO2 film samples were investigated in terms of infrared reflectance and electrical resistance with varying temperatures.  相似文献   

6.
The influence of dc biasing current on temperature dependence of resistance of La0.67Ba0.33MnO3 bulk sample is reported. A decrease in the resistance (electroresistance) on the application of higher bias current is observed. The electroresistance is maximum at metal-insulator transition temperature (TMI) and decreases when the temperature is either increased or decreased from TMI. A two-phase model is proposed to explain the occurrence of electroresistance. The higher bias current leads to an increase in alignment of spins and thus, in turn, leads to an increase in spin stiffness coefficient and decrease in the resistance at TMI.  相似文献   

7.
The temperature dependences of the optical properties and the electrical resistivity for EuBaCo2O5+δ single crystals are investigated. At temperatures below the metal-insulator transition (T MI = 340 K), the electrical resistivity is well approximated by the relationship ρ = ρ0exp(T/T 0)1/4. The optical band gap E g = 0.05 eV for the insulating phase is underestimated as compared to the theoretical value. The specific features in the dispersion of the optical conductivity and the real part of the complex permittivity upon the metal-insulator transition are determined. It is demonstrated that the optical response from charge carriers on the metal side of the metal-insulator transition is caused by the redistribution of the spectral weight of the optical conductivity from the high-energy range to the low-energy range and exhibits a strongly incoherent character. The revealed features are associated with the manifestation of the strongly correlated metallic state.  相似文献   

8.
We have studied the structural and electrical properties of epitaxial La0.7Ca0.3MnO3 (LCMO) thin films prepared by metal organic deposition under different types and degrees of substrate-induced strain. 40-nm-thick films have been epitaxially grown on single-crystalline (LaAlO3)0.3?C(SrAlTaO6)0.7 (negligible tensile strain), SrTiO3 (tensile strain) and LaAlO3 (compressive strain) substrates. High-resolution X-ray diffraction and reciprocal space maps demonstrate a direct correlation between the crystalline quality and the substrate-induced strain. The electrical properties were found to be strongly dependent on the substrate used. The temperature dependence of resistivity curves was fitted using various approaches in different phases (below and above the ferromagnetic transition temperature T P). In the ferromagnetic metallic phase, ??(T) follows a T ?? power law. The obtained values of the coefficient ???(3.5?C4) indicate that the electrical transport in our films is a combination of spin wave scattering processes and electron?Cmagnon or two-magnon scattering phenomena. In the paramagnetic insulator phase, the activation energy E A and the variable range hopping characteristics (characteristic temperature T 0) were found to be strongly dependent on the strain-induced lattice mismatch between the LCMO and the substrate used.  相似文献   

9.
La0.7Sr0.3MnO3 films were prepared by dc sputtering on Si (100) substrate at different working pressure. The possibility of controlling the magnetic and transport properties of colossal magnetoresistance film is investigated, which has attracted great research interest for practical application. The as-grown film shows different magnetic, transport and magnetoresistance change at different working pressure at room temperature, which is quite attractive from technological point of view. Maximum magnetoresistance (MR) of ?5.56%, Curie temperature (Tc) of 325 K and metal insulator transition temperature (TMI) of 278 K was achieved at room temperature.  相似文献   

10.
Epitaxial La1−x Pb x MnO3 (LPMO) thin films, grown on (100) SrTiO3 substrates by laser ablation technique at different temperatures between 600 and 850°C, have been characterized for electrical and magnetic properties. The temperature dependence of resistivity showed that the metal-insulator transition temperature (T MI) decreases with increasing substrate temperature, which has been attributed to decrease in Pb content in the filsm. The YBa2Cu3O x /La1−x MnO3 heterostructures, exhibiting both superconductivity and ferromagnetism, have been fabricated.  相似文献   

11.
Effects of epitaxial stress on the metal-insulator transition of V2O3 have been studied for in the form of epitaxial thin films grown on α-Al2O3 (0001) and LiTaO3 (0001) substrates. A metallic phase is stabilized down to 2 K in the V2O3 thin film on α-Al2O3 (0001), where the a-axis is compressed by 4% owing to large epitaxial stress. On the other hand, the transition temperature TMI is raised by 20 K from the value of 170 K in bulk samples in the film on LiTaO3 (0001), where the a-axis is expanded. These results suggest an intimate relationship between the a-axis length and TMI in V2O3. The conductivity of the metallic ultrathin films shows logarithmic temperature dependence below 20 K, probably due to the Anderson localization in two-dimensional systems.  相似文献   

12.
《Current Applied Physics》2010,10(3):821-824
We have studied the effect of thickness on the structural, magnetic and electrical properties of La0.7Ca0.3MnO3 thin films prepared by pulsed laser deposition method using X-ray diffraction, electrical transport, magneto-transport and dc magnetization. X-ray diffraction pattern reflects that all films have c-axis epitaxial growth on LaAlO3 substrate. The decrease in out-of-plane cell parameter specifies a progressive relaxation of in the plane compressive strain as the film thickness is increases. From the dc magnetization measurements, it is observed that ferromagnetic to paramagnetic transition temperature increases with increase in the film thickness. Magneto-resistance and temperature coefficient of resistance increases with film thickness and have maximum value near its metal to insulator transition temperature.  相似文献   

13.
La2/3Ca1/3MnO3 polycrystalline ceramics were synthesized by sol–gel method. Sharp temperature coefficient of resistance (TCR) variation (with peak value up to 22 %) has been observed near the metal-insulator transition temperature T MI (273 K) for the sample sintered at 1,450 °C. This TCR value is much higher than the previously reported values for the undoped and Ag-doped La0.67Ca0.33MnO3 samples and is comparable to the optimized thin films. It was concluded that the improved physical properties of the La0.67Ca0.33MnO3 material are due to its improved microstructure and homogeneity.  相似文献   

14.
2/3 Ca1/3MnO3 thin films as a function of temperature from 4 to 300 K are studied. The application of external pressure increases the temperature of the metal–insulator transition (TMI). For a film showing TMI at about 177 K, a colossal change in resisitivity (R(0)-R(p))/R(p) qualitatively comparable to the magnetoresistance (R(0)-R(B))/R(B) around the transition temperature, is observed. However, this change for the film with high TMI (267 K) is smaller by a factor of about 100. The increase of TMI with pressure is intimately associated with the pressure-induced contraction and alignment of Mn-O-Mn bonds and the possible enhancement of the double-exchange interaction with pressure. Received: 11 September 1998/Accepted: 12 September 1998  相似文献   

15.
Highly oriented (100) thin films of LaVO3 and La1−xSrxVO3 have been fabricated by pulsed laser deposition in a reducing atmosphere. The films show a transition from insulating to metallic behaviour in the composition region of x, 0.175<x<0.200. In the single crystals of the antiferromagnetic insulating phase, a first-order structural phase transition is observed few degrees below the magnetic transition, which manifests itself as a kink in the temperature dependence of resistivity. In the highly oriented thin films of LaVO3 and La1−xSrxVO3 fabricated on lattice matched substrates in this study, the structural phase transformation in the insulating phase has been suppressed. The electrical conduction is found to take place via hopping through localized states at low temperatures. The metallic compositions show a non-linear (T1.5) behaviour in the temperature dependence of resistivity. V (2p) core level spectra of these films show a gradual change in the relative intensities of V3+ and V4+ ions as the value of x increases.  相似文献   

16.
Bulk samples of gadolinium doped manganites with compositional formula La0.7−xGdxCa0.3MnO3 (x=0.0 and 0.1) were prepared by conventional solid state reaction method. After characterizing the samples by X-ray diffraction, scanning electron microscope and energy dispersive X-ray spectrometer, a systematic investigation of electrical and magneto-transport properties has been investigated. The replacement of La ion by Gd results in a decrease of the metal-insulator transition temperature TMI and the magnetoresistance as well as the resistivity are found to increase. The electrical resistivity in the entire temperature range fit well with the phenomenological percolation model, which is based upon an approach that the system consists of the phase separated ferromagnetic metallic and paramagnetic insulating regions.  相似文献   

17.
李言荣  刘兴钊  徐进  J.GEERK  R.SMITHY 《物理学报》1997,46(10):2023-2028
用倒筒式直流磁控溅射装置在LaAlO3单晶基片上原位沉积了GdBaCuO(GBCO)薄膜.系统调查了GBCO薄膜的超导性质与溅射温度Ts、溅射压力和靶组成的变化规律,发现在720—820℃较宽的基片温度范围、在较低的溅射气压(40Pa)、较高的溅射速率(0.03nm/s)下均可制备出Tc0>92K,(005)峰摇摆曲线半高宽不大于0.2、膜面非常光滑且具有良好外延特性的c轴嵌镶单晶薄膜.在最佳条件下(Ts=820℃,气 关键词:  相似文献   

18.
Nickel oxide (NiO) thin films were prepared by reactive pulsed laser deposition on thermally oxidized Si substrates in 10 Pa oxygen pressure. The substrate temperature during deposition was varied and its influence on the structural, electrical and nanomechanical properties was studied. It was proved that the structural properties were affected by the increase of substrate temperature improving the crystalline structure. Furthermore, a higher substrate temperature resulted in a thicker NiO film, which was attributed to an increased grain size. This effect influenced the electrical properties, too. Resistivity measurements showed that it increased with the increase of substrate temperature. For the first time, the nanomechanical properties of NiO films were studied. The formation and improvement of crystalline structure affected the nanomechanical properties. Nanoindentation testing of NiO thin films revealed an increase of hardness (H) and elastic modulus (E) and a decrease of surface roughness when increasing the substrate temperature.  相似文献   

19.
低电场下LiNbO3薄膜在非晶衬底上的取向生长   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了外加低电场和衬底温度对脉冲激光淀积法制备的LiNbO3薄膜取向的影响.在衬底温度为600℃和外加电场为7V/cm的条件下,在石英玻璃等非晶态衬底上获得了完全(001)取向的LiNbO3薄膜.在对具有自发极化的LiNbO3在电场作用下成核生长机制和温度对LiNbO3自发极化强度的影响进行分析的基础上,给出了低电场诱导铁电薄膜取向生长的物理依据. 关键词:  相似文献   

20.
We report the growth of single phase, c-axis aligned thin films of La1.2Ca1.8Mn2O7 on SrTiO3 (001) substrates using a controlled pulsed laser deposition method. In this method, constraint of epitaxy is utilized to stabilize the Ruddlesdon-Popper (RP) phase of La1.2Ca1.8Mn2O7. Oxygen ambient pressure and the rate of deposition play a very important role in influencing the epitaxial growth as well as maintaining phase purity of the material. The oxygen pressure inside the deposition chamber was very precisely controlled and varied during the layer-by-layer growth of the film. Films, prepared by our method, show excellent electrical and magnetic characteristics with a sharp metal-insulator transition at TM-I=90 K, closely followed by a magnetic transition at TC=91 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号