首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
V3O7·H2O nanobelts were prepared by a hydrothermal method at 190 °C using V2O5·nH2O gel and H2C2O4·2H2O as starting agents. The obtained nanobelts have diameters ranging from 40 to 70 nm with lengths up to several micrometers. Measurements of the static magnetic susceptibility and the specific heat show a discontinuous phase transition at around T=145 K, which separates two regions of paramagnetic behavior.  相似文献   

2.
The one-dimensional (1D) Sandia octahedral molecular sieves (SOMS) Na2Nb2O6·H2O nanowires were prepared by the reaction of Nb powder with NaOH via a one-step hydrothermal methods. The products were characterized by SEM, TEM, XRD, IR and EDX. A plausible sprouting growth mechanism is proposed for the formation of Na2Nb2O6·H2O nanowires based on the systematic investigation. Na2Nb2O6·H2O nanoribbons-based complex flowerlike structure were first grew on the metallic niobium surface, the growth process of SOMS nanowire is similar to the plant seed sprouting and growing, Na2Nb2O6·H2O nanowires were finally formed at the depletion of metallic niobium powder. In the end, we showed that Na2Nb2O6·H2O nanowires is hydrothermally synthesized in the 15 M NaOH solution at 423 K, which can be easily converted into NaNbO3 nanowires by calcination, while the NaNbO3 cubes were obtained through the same hydrothermal process at a higher temperature of 453 K.  相似文献   

3.
A wealth of superfine polycrystalline cuprous oxide (Cu2O) nanowires have been synthesized with hydrazine hydrated (N2H4·H2O), act as the reducing agent, and Cu(OH)2 nanowires, act as a soft template and surfactant, at room temperature. Two methods were employed for the synthesis of these nanowires, i.e. with and without capping agent (polyethylene glycol Mw 8000). Techniques of powder X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern, electron diffraction X-ray (EDX) spectroscopy, and UV-visible (UV-vis) spectroscopy have been used to characterize the morphology, structure, crystallinity, purity, and composition of nanowires. The average diameters of Cu2O nanowires, prepared with and without capping agent, were observed to be 8-10 and 12-15 nm and lengths of several microns, respectively. It is found that capping agent (PEG) confines the dimensions of synthesized nanowires. In addition, the observed optical band gap of products show blue-shift effect compared to the bulk Cu2O (Eg=2.17 eV), which ascribe it as a promising material for the conversion between solar energy and electrical or chemical energy.  相似文献   

4.
A convenient hydrothermal process was applied to prepare the cube-like MnSe2 microcrystallines through the reaction of MnSO4·H2O with Se and NaH2PO2·H2O in aqueous solution at 160 °C for 12 h. Powder X-ray diffraction (XRD) analysis confirmed that the product was the cubic phase of MnSe2 with cell parameter a=6.440 Å. The chemical composition of the MnSe2 was determined by XPS. The Raman spectrum of MnSe2 presented the peaks of the Se-Se stretching mode at 232.44 and 266.58 cm−1. The images of scanning electron microscope (SEM) and transmission electron microscope (TEM) showed the cube-like morphology of the product with the edge length ranging from 20 to 30 μm. The formation mechanism of the MnSe2 microcrystallines was discussed as well.  相似文献   

5.
Ni doped titanate nanotubes were synthesized by hydrothermal method using Ni doped rutile TiO2 nanopowders as a starting material. The electrochemical properties were investigated by cyclic voltammmetric methods. The microstructure and morphology of the synthesized powders were characterized by XRD (X-ray diffraction), and HRTEM (high resolution transmission electron microscopy). Ni doped nanotubes were composed of H2Ti2O5·H2O with outer and inner diameter of ∼10 nm and 6 nm and showed a initial discharge capacity of 305 mAh/g with poor cycling performance. However, after firing, the Ni doped nanotubes revealed better cycling performance due to lower reaction with hydrate and smaller diameter of the tubes.  相似文献   

6.
Metal tungstates (MeWO4, Me = Ba, Sr and Ca) were successfully prepared using the corresponding Me(NO3)2·2H2O and Na2WO4·2H2O in ethylene glycol by the 5 h sonochemical process. The tungstate phases with scheelite structure were detected with X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their calculated lattice parameters are in accord with those of the JCPDS cards. Transmission electron microscopy (TEM) revealed the presence of nanoparticles composing the products. Their average sizes are 42.0 ± 10.4, 18.5 ± 5.1 and 13.1 ± 3.3 nm for Me = Ba, Sr and Ca, respectively. Interplanar spaces of the crystals were also characterized with high-resolution TEM (HRTEM). Their crystallographic planes are aligned in systematic array. Six different vibration wavenumbers were detected using Raman spectrometer and are specified as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and free rotation. Fourier transform infrared (FTIR) spectra provided the evidence of scheelite structure with W-O anti-symmetric stretching vibration of [WO4]2− tetrahedrons at 786-883 cm−1. Photoluminescence emission of the products was detected over the range of 384-416 nm.  相似文献   

7.
Phase formation and photophysical properties of bismuth doped sodium tantalum oxide (perovskite, defect pyrochlore) nanoparticles prepared by a hydrothermal method were studied in detail. It was revealed that the synthesis conditions like NaOH concentration and bismuth precursor (NaBiO3·2H2O) markedly affect the crystal structure of sodium tantalum oxide. At low NaOH concentration and high bismuth precursor (NaBiO3·2H2O) content, Bi doped Na2Ta2O6 (defect pyrochlore) phase was predominantly formed, while at higher NaOH concentration, Bi doped NaTaO3 (perovskite) phase was formed. It was observed that the defect pyrochlore (Bi doped Na2Ta2O6) phase was formed and stabilized by the presence of dopant precursor (NaBiO3·2H2O). The chemical analysis of the samples confirmed the doping of Bi3+ cations in both phases. Doping of bismuth enabled visible light absorption up to 500 nm in perovskite and defect pyrochlore type sodium tantalum oxide. Bi doped NaTaO3 samples showed better performance for the photocatalytic degradation of rhodamine B than that of Bi doped Na2Ta2O6, under visible light irritation (λ>420 nm). The present results shed light on phase formation of sodium tantalate and these results are useful in understanding properties of NaTaO3 based compounds, synthesized by the hydrothermal method.  相似文献   

8.
Without the use of any extra surfactant, template or other additive, shape-controlled synthesis of sphere-, urchin- and tube-like CuS nanocrystallites has been realized just via hydrothermal treatment of different amounts of CuSO4·5H2O and equimolar Na2S2O3·5H2O in water at 150 °C for 12 h. The possible mechanism for the formation of the various nanostructures of CuS in this system was discussed.  相似文献   

9.
Nanosized tin telluride compounds were prepared by chemical reduction process and hydrothermal methods. The nanosized SnTe compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SnTe nanoalloy prepared by chemical reduction process presented quasi-spherical morphology with aggregation. The sizes of particle were 40-50 nm. The powder prepared by hydrothermal process was nearly nanospheres, and the particle sizes were 30-40 nm with narrow distribution. The effect of capping agent, reductant sort, and reaction temperature on the morphology, the particle sizes and the phase of SnTe alloys have been investigated. Experimental results indicated that N2H4·H2O plays a crucial role in the formation of nanosized rode-like SnTe compounds.  相似文献   

10.
Structure and magnetization of CoFeP films prepared by the electroless deposition were systematically investigated by varying the bath composition and deposition parameters to optimize soft magnetic properties. The cobalt content in the CoFeP films varies from 40.4 to 94.9 wt% by controlling the bath composition. Increase of the metallic ratio FeSO4·7H2O/(CoSO4·7H2O+FeSO4·7H2O) affects the films’ microstructure, which switches from amorphous to crystalline structure. The magnetic properties of CoFeP films reveal that the coercivity (Hc) values range from 80 up to 185 A/m and the saturation magnetization (Ms) from 82 to 580 eum/g depending on the bath composition, deposition parameters and heat-treatment conditions. Increase of Ms and remanent magnetization (Mr) as well as decrease of Hc are observed for the CoFeP films with bath pH, temperature and the metallic molar ratio increasing. It is also found that the Hc is enhanced with the increase of NaH2PO2·H2O concentration. CoFeP films showing good soft magnetic properties with coercivities less than 140 A/m and Ms close to 600 emu/g can be obtained in high pH bath and thereafter heat treatment. The deposit is found to be suitable as soft magnetic materials for core materials.  相似文献   

11.
NiO thin films have been deposited by chemical spray pyrolysis using a perfume atomizer to grow the aerosol. The influence of the precursor, nickel chloride hexahydrate (NiCl2·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O), nickel hydroxide hexahydrate (Ni(OH)2·6H2O), nickel sulfate tetrahydrate (NiSO4·4H2O), on the thin films properties has been studied. In the experimental conditions used (substrate temperature 350 °C, precursor concentration 0.2-0.3 M, etc.), pure NiO thin films crystallized in the cubic phase can be achieved only with NiCl2 and Ni(NO3)2 precursors. These films have been post-annealed at 425 °C for 3 h either in room atmosphere or under vacuum. If all the films are p-type, it is shown that the NiO films conductivity and optical transmittance depend on annealing process. The properties of the NiO thin films annealed under room atmosphere are not significantly modified, which is attributed to the fact that the temperature and the environment of this annealing is not very different from the experimental conditions during spray deposition. The annealing under vacuum is more efficient. This annealing being proceeded in a vacuum no better than 10−2 Pa, it is supposed that the modifications of the NiO thin film properties, mainly the conductivity and optical transmission, are related to some interaction between residual oxygen and the films.  相似文献   

12.
Results regarding micromechanical characteristics of gel grown pure- and sodium-modified copper tartrate crystals, bearing composition CuC4H4O6·3H2O, (Cu)0.77(Na)0.23C4H4O6·3H2O and (Cu)0.65(Na)0.35C4H4O6·H2O, as obtained on using indentation induced hardness testing technique are reported. Thermal behaviour of these crystals in the temperature ranging from room temperature (∼25 °C) to about 600 °C is also reported. Pure copper tartrate crystals are found to be thermally more stable than the sodium-modified ones. Dependence of Vickers’ hardness number Hv on load ranging from 0.049 to 2.94 N on two different planes for all the three compositions is analyzed. It is shown that after initial rise in the value of Hv, the same achieves saturation at a load of 0.49 N. Modification of copper tartrate crystal by introducing sodium in its lattice brings about a change in the micromechanical characteristics. The saturation value of Hv decreases with increase in the concentration of sodium ions. The results on (0 0 1) and (1 1 1) planes for both pure and modified copper tartrate crystals suggest hardness anisotropy. Relative difference of hardness between the two planes and yield strength for both pure and modified copper tartrate crystals is worked out. The experimental results are analyzed for applicability of Meyer’s law and Proportional Specimen Resistance Model. It is suggested that the experimental results indicating reverse ISE phenomenon may be explained in terms of the existence of a distorted zone near the crystal-medium interface. The integral method of Coats and Redfern approximation applied to the thermoanalytical data suggests “Random Nucleation Model” for the reaction kinetics of these crystals. Non-isothermal kinetic parameters such as activation energy, frequency factor and order of reaction are calculated.  相似文献   

13.
The nanocomposites of conducting polyaniline and layered vanadyl phosphate, VOPO4·2H2O are synthesized by redox intercalation method. Water content decreases with insertion of polyaniline molecules. In scanning electron micrographs plate like structures are observed for both VOPO4·2H2O and intercalated nanocomposites. Protonation of polyaniline and interaction with vanadyl phosphate are observed in infrared and UV absorption spectroscopy. Intercalation improves conductivity of pristine vanadyl phosphate. Thermally activated electrical dc conductivity at low temperature shows two distinct slopes around 210 K for both the nanocomposites. The optical band gap of vanadyl phosphate decreases from 4.0 to 3.7 eV due to insertion of polyaniline.  相似文献   

14.
Single-crystalline SnO2 nanowires with sizes of 4-14 nm in diameter and 100-500 nm in length were produced in a molten salt approach by using hydrothermal synthesized precursor. Structural characters of the nanowires were examined by X-ray diffraction and high-resolution electron transmission microscopy. Raman, photoluminescence and X-ray photoelectron spectra of the samples were examined under heat treatments. Three new Raman modes at 691, 514 and 358 cm−1 were recorded and assigned. The former two are attributed to activation of original Raman-forbidden A2uLO mode and the third is attributed to defects in small-sized nanowires. A strong photoluminescence is observed at about 600 nm, the temperature effects is examined and the origin of the PL process is discussed via X-ray photoelectron spectra.  相似文献   

15.
Magnesium oxide (MgO) nano-size powder is synthesized using magnesium nitrate hexahydrate and oxalic acid as precursors with ethanol as a solvent. The process involves gel formation, drying at 100 °C for 24 h to form magnesium oxalate dihydrate [α-MgC2O4·2H2O] and its decomposition at 500, 600, 800, and 1000 °C for 2 h to yield MgO powder (average crystallite size ∼6.5-73.5 nm). The sol-gel products at various stages of synthesis are characterized for their thermal behaviour, phase, microstructure, optical absorption, and presence of hydroxyl and other groups like OCO, CO, C-C, etc. MgO powder is shown to possess an f.c.c. (NaCl-type) structure with lattice parameter increasing with decrease in crystallite size (tav); typical value being ∼4.222(2) Å for tav∼6.5 nm as against the bulk value of 4.211 Å. Infrared absorption has shown MgO to be highly reactive with water. Also, a variety of F- and M-defect centres found in MgO produce energy levels within the band gap (7.8 eV), which make it attractive for application in plasma displays for increasing secondary electron emission and reducing flickering effects. The possible application of the intermediate sol-gel products, viz., α-MgC2O4·2H2O and anhydrous magnesium oxalate (MgC2O4) in understanding the plants and ESR dosimetry, respectively, has also been suggested.  相似文献   

16.
The vibrational spectra of Eu[Co(CN)6]·4H2O and luminescence spectra of Eu3+ in this compound, using 355 nm excitation at temperatures down to 10 K, have been assigned. A clear distinction is made between the n=5 and 4 members of the Ln[M(CN)6nH2O series from the vibrational spectra. The electronic spectra show prominent vibronic structures, particularly for the 5D07F2 sideband. A resonance occurs between the transitions 5D07F1(III) and 5D07F0+ν(Eu−N). A crystal field analysis of the derived energy data set is presented for Eu3+ in eight coordination geometry.  相似文献   

17.
Transparent conducting thin films of fluorine-doped tin oxide (FTO) have been deposited onto the preheated glass substrates of different thickness by spray pyrolysis process using SnCl4·5H2O and NH4F precursors. Substrate thickness is varied from 1 to 6 mm. The films are grown using mixed solvent with propane-2-ol as organic solvent and distilled water at optimized substrate temperature of 475 °C. Films of thickness up to 1525 nm are grown by a fine spray of the source solution using compressed air as a carrier gas. The films have been characterized by the techniques such as X-ray diffraction, optical absorption, van der Pauw technique, and Hall effect. The as-deposited films are preferentially oriented along the (2 0 0) plane and are of polycrystalline SnO2 with a tetragonal crystal structure having the texture coefficient of 6.19 for the films deposited on 4 mm thick substrate. The lattice parameter values remain unchanged with the substrate thickness. The grain size varies between 38 and 48 nm. The films exhibit moderate optical transmission up to 70% at 550 nm. The figure of merit (φ) varies from 1.36×10−4 to 1.93×10−3 Ω−1. The films are heavily doped, therefore degenerate and exhibit n-type electrical conductivity. The lowest sheet resistance (Rs) of 7.5 Ω is obtained for a typical sample deposited on 4 mm thick substrate. The resistivity (ρ) and carrier concentration (nD) vary over 8.38×10−4 to 2.95×10−3 Ω cm and 4.03×1020 to 2.69×1021 cm−3, respectively.  相似文献   

18.
This paper outlines the discovery of a newly characterised isomorph of ferrous chloride tetrahydrate, Fe(H2O)6·FeCl4(H2O)2, which was initially identified by X-ray crystallography and confirmed by Mössbauer spectroscopy. The X-ray analysis identified the space group as P21/c with essentially the same unit cell dimensions as the well-known isomorph, FeCl2·4H2O, except that one edge is doubled due to two discrete [Fe(H2O)6]2+ and [FeCl4(H2O)2]2− species per unit cell. Time-series Mössbauer studies revealed this new isomorph to be unstable upon atmospheric exposure, decaying to the well-known structure over a period of days. Density functional theory calculations support an energetically favourable catalytic interconversion involving adsorbed water. A high-precision redetermination on the FeCl2·4H2O crystal structure, which is also in space group P21/c, is also reported, providing the unit cell parameters: a=5.8765(3) Å, b=7.1100(3) Å, c=8.4892(5) Å and β=111.096(1)°.  相似文献   

19.
Cobalt hydroxide ultra fine nanowires were prepared by a facile hydrothermal route using hydrogen peroxide. This method provides a simple, low cost, and large-scale route to produce β-cobalt hydroxide nanowires with an average diameter of 5 nm and a length of ca. 10 μm, which show a predominant well-crystalline hexagonal brucite-like phase. Their thermal decomposition produced highly uniform nanowires of cobalt oxide (Co3O4) under temperature 500 °C in the presence of oxygen gas. The produced cobalt oxide was characterized by X-ray diffraction, transmission electronic microscopy, and selected-area electron diffraction. The results indicated that cobalt oxide nanowires with an average diameter of 10 nm and a length of ca. 600 nm have been formed, which show a predominant well-crystalline cubic face-centered like phase.  相似文献   

20.
Two novel complexes of Sm(III) and Dy(III) with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands were synthesized and their structure and luminescence properties were characterized. The complexes of [Ln(ODA)(phen)·4H2O]Cl·5H2O [Ln=Sm and Dy] crystallize in the monoclinic space group P21/n with Sm: a=12.3401(14) Å, b=16.821(2), c=12.6847(11) Å, β=107.939(10)°, V=2505.0(5) Å3, Z=4 and ρ=1.841 mg/m3, and with Dy: a=12.289(7) Å, b=16.805(6) Å, c=12.705(4) Å, β=108.144(18)°, V=2493.4(19) Å3, Z=4 and ρ=1.786 mg/m3. The complexes of [Sm(ODA)(phen)·4H2O]+ and [Dy(ODA)(phen)·4H2O]+ excited by UV light produce orange red and lightly white emissions, respectively, via the nonradiative energy transfer from phen to the metals. The quantum yield of the sensitized luminescence of [Dy(ODA)(phen)·4H2O]+ (Q=19%) is much greater than that of [Sm(ODA)(phen)·4H2O]+ (Q=1.4%). The luminescence decay times of the complexes were in a few microsecond range and independent of temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号