首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mixed electronic-ionic conduction in 0.5[xAg2O-(1−x)V2O5]-0.5TeO2 glasses with x=0.1-0.8 has been investigated over a wide temperature range (70-425 K). The mechanism of dc conductivity changes from predominantly electronic to ionic within the 30?mol% Ag2O?40 range; it is correlated with the underlying change in glass structure. The temperature dependence of electronic conductivity has been analyzed quantitatively to determine the applicability of various models of conduction in amorphous semiconducting glasses. At high temperature, T>θD/2 (where θD is the Debye temperature) the electronic dc conductivity is due to non-adiabatic small polaron hopping of electrons for 0.1?x?0.5. The density of states at Fermi level is estimated to be N(EF)≈1019-1020 eV−1 cm−3. The carrier density is of the order of 1019 cm−3, with mobility ≈2.3×10−7-8.6×10−9 cm2 V−1 s−1 at 300 K. The electronic dc conductivity within the whole range of temperature is best described in terms of Triberis-Friedman percolation model. For 0.6?x?0.8, the predominantly ionic dc conductivity is described well by the Anderson-Stuart model.  相似文献   

2.
Sodium borophosphate glasses doped with copper ions having general composition 20Na2O-20ZnO-25B2O3-(35-x) P2O5-x CuO (x=1-8 mol %) were prepared using conventional melt-quench method and characterized by density, UV-visible optical absorption, photoluminescence and conductivity measurements. Eoptical values for different glass samples are found to decrease systematically from 3.5 to 2.5 eV with increase in CuO content in the glass. Network modifying action of CuO with the glass network has been confirmed from the UV-visible optical absorption studies. Presence of Copper in the form of Cu+ species has been confirmed from photoluminescence measurements. The electrical conductivity (σ) increases with increase in copper oxide content in the glass and temperature dependence of electrical conductivity confirmed the semiconducting nature of the samples.  相似文献   

3.
We report, for the first time the study of mixed alkali effect (MAE) in boroarsenate glasses. Density, DSC, DC electrical conductivity and IR studies have been carried out for xK2O-(40−x)Na2O-50B2O3-10As2O3 glasses. The DC electrical conductivity was measured in the temperature range 100 °C to below the glass transition temperature. The strength of the MAE in Tg, DC electrical conductivity and activation energy has been determined. It is observed that the strength of MAE in DC electrical conductivity is less pronounced with increase in temperature. The results are explained by the structural model recently proposed by Swenson and coworkers, supporting molecular dynamic results. The IR studies show that the glass system contains BO3 and BO4 units in the disordered manner.  相似文献   

4.
Ag-Ge-Se glass forming system is dominated by liquid immiscibility. Glasses in the Se-GeSe2-Ag2Se triangle may have different morphologies according to their composition. In this work inhomogeneous morphology is observed in Agx(GeySe1−y)100−x bulk glasses with y = 0.20, 0.25 at.% fraction. Electron microscopy reveals that the scale of heterogeneity strongly depends on the sample composition. The physical properties of these glasses are also dependent on their composition and can be easily correlated to their morphology. Accordingly, the electric conductivity evolves from semiconducting to ionic conductivity whereas a percolation transition occurs in a narrow Ag concentration range.Mössbauer spectrometry let us to analyse the local order of these intrinsically heterogeneous glasses employing 57Fe as a probe.  相似文献   

5.
A number of samples of silver phosphate glasses Ag2O−P2O5−Zn/CdX2 (X=Cl, Br or I) with 1, 5, 10 and 20 mol-% zinc or cadmium halides have been prepared. Control samples of undoped silver phosphate glasses were also prepared. These glasses were characterized by elemental analysis, X-ray diffraction, IR spectra, differential scanning calorimetry, transference number measurements and electrical conductivity studies. These glasses were found to be essentially ionic conductors. The undoped silver phosphate glass (Ag2O−P2O5) has a low σ value in comparison to the doped ones. The conductivity (σ) in the doped glasses increases substantially with increasing concentration of dopant salts Zn/or CdX2 and as the anions of the dopants are changed from Cl to I. It is found that the σ values of the ZnX2 doped glasses are slightly greater than those of the CdX2 doped ones, and the silver phosphate glasses doped with (20 mol-%) Zn/CdI2 yielded maximum conductivity. The results have been discussed and explained on the basis of changes in the structure of the glass matrix by the addition of dopant ions of different sizes, IR spectra and thermal studies.  相似文献   

6.
Structural analysis of x[(100−y)Ag2yMnO]·(100−x)[2B2O3·As2O3] glasses, with x=10 mol% and 0≤y≤10 mol%, was performed by means of FT-IR and FT-Raman spectroscopies. The purpose of this work is to investigate the structural changes that appear in the xAg2O·(100−x)·[2B2O3·As2O3] glasses with the addition and increase in manganese ions content. FT-IR measurements revealed the presence of pyro-, ortho-, di-, tri-, tetra- and penta-borate groups and structural units characteristic to As2O3 in the structure of the studied glasses. FT-IR spectroscopy measurements also show that BO3 units are the main structural units of the glass system. The presence of structural units characteristic to Ag2O were not directly evidenced by FT-IR spectroscopy. In addtition, the FT-Raman analysis evidenced the presence of boroxol rings in the structure of the studied glasses.  相似文献   

7.
X-ray diffraction (XRD), differential scanning calorimeter (DSC), density (d) and dc conductivity (σ) of the glasses in Fe2O3-CaO-P2O5 system were reported. The dc conductivity in the temperature range 303-453 K was measured. The overall features of these XRD curves confirm the amorphous nature of the present samples. The density of glasses increases from 2.750 to 2.892 g/cm3 with increasing Fe2O3 content as a result of a strengthening of cross-linking within glass network. The glass temperature values (Tg) of the present glasses were larger than those of tellurite glasses. This indicates a higher thermal stability of the glass in the present system. The glasses had conductivities ranging from 10−9 to 10−5 Sm−1 at temperatures from 303 to 453 K. Electrical conduction of the glasses was confirmed to be due to non-adiabatic small polaron hopping and the conduction was primarily determined by hopping carrier mobility.  相似文献   

8.
Glasses with composition xBi2O3·(30−x)M2O·70B2O3 (M=Li, Na) containing 2 mol% V2O5 have been prepared over the range 0≤x≤15 (x is in mol%). The electron paramagnetic resonance spectra of VO2+ of these glasses have been recorded in the X-band (≈9.3 GHz) at room temperature (RT≈300 K). Spin Hamiltonian parameters, g, g, A, A, dipolar hyperfine coupling parameter, P, and Fermi contact interaction parameter, K, have been calculated. The molecular orbital coefficients, α2 and γ2, have been calculated by recording the optical transmission spectra. In xBi2O3·(30−x)Li2O·70B2O3 glasses there is decrease in the tetragonality of the V4+O6 complex for x up to 6 mol% whereas for x≥6 mol%, tetragonality increases. In xBi2O3·(30−x)Na2O·70B2O3 glasses there is increase in the tetragonality of the V4+O6 complex with increasing x. The 3dxy orbit expands with increase in Bi2O3:M2O ratio. Values of the theoretical optical basicity, Λth, have also been reported. The DC conductivity increases with increase in temperature. The order of conductivity is 10−5 ohm−1 m−1 at low temperature and 10−3 ohm−1 m−1 at high temperature. The DC conductivity decreases and the activation energy increases with increase in Bi2O3:M2O ratio.  相似文献   

9.
《Solid State Ionics》2006,177(5-6):475-482
In the present work, an evaluation of the transport properties of super ion conducting quaternary system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1  x/y  3, in steps of 0.25, to study the effect of changing the modifier to former ratio on the conduction phenomena has been undertaken. Electrical conductivity measurements were made using complex impedance method. The electrical conductivity and conductivity relaxation of the system were studied in the temperature range from 303 K to 333 K and in the frequency range from 100 Hz to 10 MHz. The highest conductivity at room temperature is obtained for the system with modifier to former ratio 1.75. Impedance and modulus analyses had indicated the temperature independent distribution of relaxation times and the non-Debye behavior in these materials. The co-operative motion due to strong coupling between the mobile Ag+ ions is assumed to give rise to non-Debye type of relaxation. The silver ionic transport number (tAg+) obtained by the emf technique suggested the occurrence of silver ion conduction in the CdI2-doped Ag2O–V2O5–B2O3 system.  相似文献   

10.
Solid-state reaction processing technique was used to prepare ZnxNb1−xO (0≤x≤0.02) polycrystalline bulk samples. In the present study, we find that their lattice parameters a and c tend to decrease with increasing amount of Nb additive. The electrical conductivity of all the Zn1−xNbxO samples increased with increasing temperature, indicating a semiconducting behavior in the measured temperature range. The addition of Nb2O5 to ZnO led to an increase in the electrical conductivity and a decrease in the absolute value of the Seebeck coefficient. The best performance at 1000 K has been observed for nominal 0.5 at% Nb-doped ZnO, with an electrical resistivity of about 73.13 (S cm−1) and Seebeck coefficient of ∼257.36 μV K−1, corresponding to a power factor (S2σ) of 4.84×10−4 Wm−1 K−2. The thermal conductivity, κ, of the oxide decreased as compared to pure ZnO. The figure of merit ZT values of ZnO-doped Nb2O5 samples are higher than the ZnO pure sample, demonstrating that the Nb2O5 addition is fairly effective for enhancing thermoelectric properties.  相似文献   

11.
The alloys with the general formula of Bi85Sb15−xAgx (x=0, 1, 3, 5, 7) were prepared by mechanical alloying and subsequent pressureless sintering (Bi85Sb15 alloy was used for comparison). Their transport properties involving electrical conductivity, Seebeck coefficient, and thermal conductivity had been investigated in the temperature range of 80-300 K. The maximum absolute value of Seebeck coefficient (120 μV/K) was found at 160 K in the alloy Bi85Sb15−xAgx (x=3). The figure-of-merit of alloy Bi85Sb15−xAgx (x=1) reached a maximum value of 2.16×10−3 K−1 at 219 K, which is as large again as that of the reference sample Bi85Sb15.  相似文献   

12.
《Solid State Ionics》1987,24(1):81-88
Electrical conductivity data have been determined for a series of x Ag2O(1 − x)Li2OB2O3P2O5 glasses. The progressive substitution of Li+ by Ag+ considerably decreases the ionic conductivity which shows a minimum at Ag/(Ag + Li) = 0.4. This behaviour becomes intense as the temperature is lowered. This mixed cationic effect is further characterised by activation energy and conductivity relaxation time going to a maxima where conductivity minima occurs. ac conductivity and electric modulus response of those glasses are discussed.  相似文献   

13.
Glasses with compositions 25Li2O-(75−x)Bi2O3-x B2O3, with 0?x?30 mol%, have been prepared using the melt quenching technique. The density and the molar volume have been determined. IR spectroscopy is used as a structural probe of the nearest neighbor environment in the glass network. The optical transmittance and reflectance spectrum of the glasses have been recorded in the wavelength range 400-1100 nm. The values of the optical band gap Egopt for indirect transition and refractive index have been determined for 0?x?30 mol%. The average electronic polarizability of the oxide ion αo2− and the optical basicity have been estimated from the calculated values of the refractive indices. Variations in the different physical parameters such as the density, molar volume, optical band gap, refractive index, average electronic polarizability of the oxide ion and optical basicity with B2O3 content have been analyzed and discussed in terms of the changes in the glass structure.  相似文献   

14.
This paper reports on different physical and optical properties of Nd3+-doped soda-lime silicate glass. The glasses containing Nd3+ in (65−x)SiO2:25Na2O:10CaO:xNd2O3 (where x=0.0-5.0 mol%) have been prepared by the melt-quenching method. In order to understand the role of Nd2O3 in these glasses the density, molar volume, refractive index and optical absorption were investigated. The results show that the density and molar volume of the glasses increase with an increase in Nd2O3 concentration and consequently generate more non-bridging oxygen (NBOs) into glass matrix. The optical absorption spectra were measured in the wavelength range from 300 to 700 nm and the optical band gaps were determined. It was found that the optical band gap decreases with an increase in Nd2O3 concentration. On the basis of the measured values of density and refractive index, the Nd3+ ion concentration in glasses, the polarizability of oxide ions and optical basicity were theoretically determined.  相似文献   

15.
Glass samples of compositions xZnO-xCeO2-(30−x)PbO-(70−x)B2O3 with x varying from 2% to 10% mole fraction are prepared by the melt quench technique. The structural and optical analysis of glasses is carried out by XRD, FTIR, density and UV-visible spectroscopic measurement techniques. The FTIR spectral analysis indicates that with the addition of ZnO contents in glass network, structural units of BO3 are transformed into BO4. It has been observed in our previous work that band gap decreases from 2.89 to 2.30 eV for CeO2-PbO-B2O3 glasses with cerium content varying from 0% to 10% [Gurinder Pal Singh, Davinder Paul Singh, Physica B 406(3) (2011) 640-644]. With the incorporation of zinc in CeO2-PbO-B2O3 glasses, the optical band gap energy decreases further from 2.38 to 2.03 eV. This causes more compaction of the borate network, which results in an increase of density (3.39-4.02 g/cm3). Transmittance shows that ZnO in glass samples acts as a reducing agent thathelps to convert Ce4+→Ce3+ ions.  相似文献   

16.
Room temperature electron paramagnetic resonance (EPR) spectra and temperature dependent magnetic susceptibility data have been obtained on bulk x(ZnO,Fe2O3)(65−x)SiO220(CaO, P2O5)15Na2O (6≤x≤21 mole%) glasses prepared by melt quenching method. EPR spectra of the glasses revealed absorptions centered at g≈2.1 and 4.3. The variations of the intensity and line width of these absorption lines with composition have been interpreted in terms of the variation in the concentration of the Fe2+ and Fe3+ ions in the glass and the interaction between the iron ions. EPR and magnetic susceptibility data of the glasses reveal that both Fe2+ and Fe3+ ions are present in the glasses, with their relative concentration being dependent on the glass composition. The studies reveal superexchange type interactions in these glasses, which are strongly dependent on their iron content.  相似文献   

17.
Samarium doped zinc-phosphate glasses having composition Sm2O3 (x)ZnO(60−x) P2O5 (40) (where x=0.1-0.5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been calculated. The values of density range from 3.34 to 3.87 gm/cm3 and those of molar volume range from 27.62 to 31.80 cm−3. The optical absorbance studies were carried out on these glasses to measure their energy band gaps. The absorption spectra of these glasses were recorded in UV-visible region. No sharp edges were found in the optical spectra, which verifies the amorphous nature of these glasses. The optical band gap energies for these glasses were found to be in the range of 2.89-4.20 eV. The refractive index and polarizability of oxide ion have been calculated by using Lorentz-Lorentz relations. The values of refractive index range from 2.13 to 2.42 and those of polarizability of oxide ion range from 6.51×10−24 to 7.80×10−24 cm3.  相似文献   

18.
20LiF-(30−x)Sb2O3-50B2O3:xNiO glasses with the value of x (ranging from 0 to 1.0 mol% in steps of 0.2) were prepared. A number of studies, viz. differential scanning calorimetry, optical absorption, magnetic susceptibility and thermoluminescence, on these glasses were carried out as a function of nickel ion concentration. An anomaly has been observed in all the properties of these glasses when NiO concentration is about 0.6 mol%. The results of these studies were analysed in the light of different environments of nickel ions in the glass network.  相似文献   

19.
A series of binary borosilicate glasses prepared by the sol-gel method are shown to be bioactive. Tetraethyl orthosilicate (TEOS) and trimethylborate (TMB) in acidic medium are used to prepare xB2O3·(1−x)SiO2 glass systems for x=0.045-0.167. The formation of a layer of apatite-like mineral on the glass surface becomes apparent after soaking in simulated body fluid for 48 h. We have measured the 11B-11B homonuclear second moments of the borosilicate glasses and inferred that no macroscopic phase separation occurred in our glasses. The 11B chemical shift data also show that the formation of clustered boroxol rings is negligible in our glass system. Although the bioactivity of our borosilicate glasses is less than that of CaO-SiO2 sol-gel glasses, these simple binary systems could be taken as reference glass systems for the search of new bioactive borosilicate glasses.  相似文献   

20.
Thermoluminscence (TL) properties of quaternary tellurite glass in the form 80(TeO2)–5(TiO2)–(15−x)(WO3)–(x)AnOm where AnOm=Nb2O5, Nd2O3, Er2O3 and x mol% have been measured. TL main dosimetry peak for each produced glass sample were investigated for 60Co gamma rays. Dosimetric properties of the quaternary tellurite glasses have been measured as a function of different compositions of the glass system in different rare earth oxides concentration by using thermoluminescence (TL) detection technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号