首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The current-voltage (I-V) characteristics of Al/SiO2/p-Si metal-insulator-semiconductor (MIS) Schottky diodes were measured at room temperature. In addition the capacitance-voltage (C-V) and conductance-voltage (G-V) measurements are studied at frequency range of 10 kHz-1 MHz. The higher value of ideality factor of 3.25 was attributed to the presence of an interfacial insulator layer between metal and semiconductor and the high density of interface states localized at Si/SiO2 interface. The density of interface states (Nss) distribution profile as a function of (Ess − Ev) was extracted from the forward bias I-V measurements by taking into account the bias dependence of the effective barrier height (Φe) at room temperature for the Schottky diode on the order of ≅4 × 1013 eV−1 cm−2. These high values of Nss were responsible for the non-ideal behaviour of I-V and C-V characteristics. Frequency dispersion in C-V and G-V can be interpreted only in terms of interface states. The Nss can follow the ac signal especially at low frequencies and yield an excess capacitance. Experimental results show that the I-V, C-V and G-V characteristics of SD are affected not only in Nss but also in series resistance (Rs), and the location of Nss and Rs has a significant on electrical characteristics of Schottky diodes.  相似文献   

2.
The electrical characteristics of Au/n-Si (1 0 0) Schottky rectifier have been studied in a wide irradiation fluence range using conventional current-voltage (I-V) and capacitance-voltage (C-V) measurements. The I-V characteristics showed an abnormal increase in forward current at low voltage. The device shows a bend in forward I-V and reverses bias C-V characteristics due to extra current, suggesting that there are two independent contributions to thermionic current, corresponding to two levels of the Schottky barrier. It is shown that the excess current at low voltage can be explained by taking into account the role of heavy ion irradiation induced defects at the metal semiconductor interface.  相似文献   

3.
Experimental study of dc and ac transport properties of CuInSe2/ZnO heterostructure is presented. The current-voltage (I-V) and frequency dependent capacitance (C-f) characteristics of CuInSe2/ZnO heterostructure were investigated in the temperature range 160-393 K. The heterostructure showed non-ideal behavior of I-V characteristics with an ideality factor of 3.0 at room temperature. Temperature dependent dc conductivity studies exhibited Arrhenius type behavior and revealed the presence of trap level. The C−2-V plot measured at frequency 50 kHz had shown non-linear behavior. An increase in capacitance with temperature was observed. The capacitance-frequency characteristics exhibited a transition between low frequency and the high frequency capacitance. As the temperature was lowered the transition occurred at lower frequencies. The frequency and temperature dependent device capacitance had shown a defect state having activation energy of 108 meV.  相似文献   

4.
The frequency dependent electrical properties of Ag/n-CdO/p-Si structure has been investigated using capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics in the frequency range 10 kHz–1 MHz in the room temperature. The increase in capacitance at lower frequencies is observed as a signature of interface states. The presence of the interfaces states (NSS) is also evidenced as a peak in the capacitance–frequency characteristics. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C–V and G/ω–V measurements and plotted as functions of voltage and frequency. The distribution profile of RS–V gives a peak in the depletion region at low frequencies and disappears with increasing frequencies. The values of interface state densities and series resistance from capacitance–voltage-frequency (C–V-f) and conductance–voltage-frequency (G/ω–V-f) measurements were obtained in the ranges of 1.44×1016–7.59×1012 cm?2 eV?1 and 341.49–8.77 Ω, respectively. The obtained results show that the C–V-f and G/ω–V-f characteristics confirm that the interface states density (NSS) and series resistance (RS) of the diode are important parameters that strongly influence the electrical parameters in Ag/n-CdO/p-Si structures.  相似文献   

5.
The forward bias current-voltage (I-V) characteristics of Al/p-Si (MS) Schottky diodes with native insulator layer were measured in the temperature range of 80-300 K. The obtained zero bias barrier height ΦB0(I-V), ideality factor (n) and series resistance (Rs) determined by using thermionic emission (TE) mechanism show strong temperature dependence. There is a linear correlation between the ΦB0(I-V) and n because of the inhomogeneties in the barrier heights (BHs). Calculated values from temperature dependent I-V data reveal an unusual behaviour such that the ΦB0 decreases, as the n and Rs values are increasing with decreasing absolute temperature, and these changes are more pronounced especially at low temperatures. Such temperature dependence of BH is contradictory with the reported negative temperature coefficient of the barrier height. In order to explain this behaviour we have reported a modification in the expression reverse saturation current Io including the n and the tunnelling factor (αΧ1/2δ) estimated to be 15.5. Therefore, corrected effective barrier height Φbef.(I-V) versus temperature has a negative temperature coefficients (α = −2.66 × 10−4 eV/K) and it is in good agreement with negative temperature coefficients (α = −4.73 × 10−4 eV/K) of Si band gap. In addition, the temperature dependent energy distribution of interface states density Nss profiles was obtained from the forward bias I-V measurements by taking into account the bias dependence of the Φe and n. The forward bias I-V characteristics confirm that the distribution of Nss, Rs and interfacial insulator layer are important parameters that the current conduction mechanism of MS Schottky diodes.  相似文献   

6.
The capacitance–voltage–frequency (CVf) and conductance–voltage–frequency (G/wVf) characteristics of Al/perylene/p-Si Schottky barrier diodes (SBDs) fabricated with spin coating system have been investigated in the frequency range of 30 kHz–2 MHz at room temperature. In order to elucidate the electrical characteristics of SBDs with perylene interface, the voltage and frequency dependent series resistance (Rs), frequency dependent density distribution profile of interface state (Nss) were obtained. The measurements of C and G/w were found to be strongly dependent on bias voltage and frequency for Al/perylene/p-Si SBDs. For each frequency, the RsV plot gives a peak, decreasing with increasing frequencies. Also, it has been shown that the interface states density exponentially decreases with increasing frequency. The CVf and G/wVf characteristics confirm that the Nss and Rs of the diode are important parameters that strongly influence the electric parameters in metal/polymer/semiconductor (MPS) structure.  相似文献   

7.
The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (Al/Si3N4/p-Si) Schottky barrier diodes (SBDs) were measured in the temperature range of 80-300 K. By using the thermionic emission (TE) theory, the zero-bias barrier height ΦB0 calculated from I-V characteristics was found to increase with increasing temperature. Such temperature dependence is an obvious disagreement with the negative temperature coefficient of the barrier height calculated from C-V characteristics. Also, the ideality factor decreases with increasing temperature, and especially the activation energy plot is nonlinear at low temperatures. Such behaviour is attributed to Schottky barrier inhomogeneties by assuming a Gaussian distribution of barrier heights (BHs) at interface. We attempted to draw a ΦB0 versus q/2kT plot to obtain evidence of a Gaussian distribution of the BHs, and the values of ΦBo = 0.826 eV and αo = 0.091 V for the mean barrier height and standard deviation at zero-bias, respectively, have been obtained from this plot. Thus, a modified ln(Io/T2) − q2σo2/2(kT)2 versus q/kT plot gives ΦB0 and Richardson constant A* as 0.820 eV and 30.273 A/cm2 K2, respectively, without using the temperature coefficient of the barrier height. This value of the Richardson constant 30.273 A/cm2 K2 is very close to the theoretical value of 32 A/cm2 K2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/Si3N4/p-Si Schottky barrier diodes can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights. In addition, the temperature dependence of energy distribution of interface state density (NSS) profiles was determined from the forward I-V measurements by taking into account the bias dependence of the effective barrier height and ideality factor.  相似文献   

8.
In this study, current-voltage (I-V) and capacitance-voltage (C-V) characteristics of metal-semiconductor (MS) Zn/p-Si and Sn/p-Si Schottky diodes, with high resistivity silicon structures, are investigated. The parameters of series resistance (RS), the ideality factor (n) and the barrier height (Φb) are determined by performing different plots from the forward bias current-voltage (I-V) and reverse bias capacitance-voltage (C-V) characteristics. Thus, the barrier heights (Φb) for the Si Schottky diodes obtained between 0.725 and 1.051 eV, the ideality factor (n) between 1.043 and 1.309, and the series resistance (RS) between 12.594 and 12.950 kΩ. The energy distribution of interface states density was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. It was concluded that the density of interface states in the considered energy range are in close agreement with each other values obtained for Zn/p-Si and Sn/p-Si Schottky diodes.  相似文献   

9.
The temperature dependence of capacitance–voltage (CV) and conductance–voltage (G/wV) characteristics of Al/HfO2/p-Si metal-oxide-semiconductor (MOS) device has been investigated by considering the effect of series resistance (Rs) and interface state density (Nss) over the temperature range of 300–400 K. The CV and G/wV characteristics confirm that the Nss and Rs of the diode are important parameters that strongly influence the electric parameters in MOS device. It is found that in the presence of series resistance, the forward bias CV plots exhibits a peak, and its position shifts towards lower voltages with increasing temperature. The density of Nss, depending on the temperature, was determined from the (CV) and (G/wV) data using the Hill–Coleman Method. Also, the temperature dependence of dielectric properties at different fixed frequencies over the temperature range of 300–400 K was investigated. In addition, the electric modulus formalisms were employed to understand the relaxation mechanism of the Al/HfO2/p-Si structure.  相似文献   

10.
The effects of 60Co (γ-ray) irradiation on the electrical and dielectric properties of Al-TiW-Pd2Si/n-Si Schottky diodes (SDs) have been investigated by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature and 500 KHz. The corrected capacitance and conductance values were obtained by eliminating the effect of series resistance (Rs) on the measured capacitance (Cm) and conductance (Gm) values. The high-low frequency capacitance (CHF-CLF) method given in [12] as Nss = (1/qA) [((1/CLF) − (1/Cox))−1 −  ((1/CHF) − (1/Cox))−1] was successfully adapted to the before-after irradiation capacitance given in this report as Nss = (1/qA) [((1/Cbef) − (1/Cox))−1 − ((1/Cafter) − (1/Cox))−1] for the analyzing the density of interface states. The Nss-V plots give a distinct peak corresponding to localized interface states regions at metal and semiconductor interface. The experimental values of the ac electrical conductivity (σac), the real (M′) and imaginary (M″) parts of the electrical modulus were found to be strong functions of radiation and applied bias voltage, especially in the depletion and accumulation regions. The changes in the dielectric properties in the depletion and accumulation regions stem especially from the restructuring and reordering of the charges at interface states and surface polarization whereas those in the accumulation region are caused by series resistance effect.  相似文献   

11.
The electrical characteristics of polycrystalline Si (poly Si) layers embedded into high-k Al2O3 (alumina) gate layers are investigated in this work. The capacitance versus voltage (C-V) curves obtained from the metal-alumina-polysilicon-alumina-silicon (MASAS) capacitors exhibit significant threshold voltage shifts, and the width of their hysteresis window is dependent on the range of the voltage sweep. The counterclockwise hysteresis observed in the C-V curves indicates that electrons originating from the p-type Si substrate in the inversion condition are trapped in the floating gate layer consisting of the poly Si layer present between the top and bottom Al2O3 layers in the MASAS capacitor. Also, current versus voltage (I-V) measurements are performed to examine the electrical characteristics of the fabricated capacitors. The I-V measurements reveal that our MASAS capacitors show a very low leakage current density, compared to the previously reported results.  相似文献   

12.
The current-voltage (I-V) characteristics of Al/Rhodamine-101/p-Si/Al contacts have been measured at temperatures ranging from 280 to 400 K at 20 K intervals. A barrier height (BH) value of 0.817 eV for the Al/Rh101/p-Si/Al contact was obtained at the room temperature that is significantly larger than the value of 0.58 eV of the conventional Al/p-Si Schottky diode. While the barrier height Φb0 decreases the ideality factors (n) become larger with lowering temperature. The high values of n depending on the sample temperature may be ascribed to decrease of the exponentially increase rate in current due to space-charge injection into Rh101 thin film at higher voltage. Therefore, at all temperatures, it has been seen that the I-V characteristics show three different regions, the ohmic behavior at low voltages, and the space charge limited current with an exponential distribution of traps at high voltages.  相似文献   

13.
Our goal is to experimentally investigate whether or not the effective Schottky barrier heights (SBHs) and ideality factors obtained from the current-voltage (I-V) and capacitance-voltage (C-V) characteristics differ from diode to diode even if the samples were identically prepared. For this purpose, we prepared Cd/n-Si (33 dots) and Cd/p-Si (15 dots) diodes. The SBH for the Cd/n-Si diodes ranged from 0.701 to 0.605 eV, and ideality factor n from 1.913 to 1.213. Φb value for the Cd/p-Si diodes ranged from 0.688 to 0.730 eV, and ideality factor n value from 1.473 to 1.040. The experimental SBH distributions obtained from the C−2-V and I-V characteristics were fitted by a Gaussian function and their mean SBH values were calculated. Furthermore, the laterally homogeneous barrier heights were also computed from the extrapolation of the linear plot of experimental barrier heights versus ideality factors.  相似文献   

14.
Electrical transport properties of Ag metal-fluorescein sodium salt (FSS) organic layer-silicon junction have been investigated. The current-voltage (I-V) characteristics of the diode show rectifying behavior consistent with a potential barrier formed at the interface. The diode indicates a non-ideal I-V behavior with an ideality factor higher than unity. The ideality factor of the Ag/FSS/p-Si diode decreases with increasing temperature and the barrier height increases with increasing temperature. The barrier height (φb=0.98 eV) obtained from the capacitance-voltage (C-V) curve is higher than barrier height (φb=0.72 eV) derived from the I-V measurements. The barrier height of the Ag/FSS/p-Si Schottky diode at the room temperature is significantly larger than that of the Ag/p-Si Schottky diode. It is evaluated that the FSS organic layer controls electrical charge transport properties of Ag/p-Si diode by excluding effects of the SiO2 residual oxides on the hybrid diode.  相似文献   

15.
The negative capacitance (NC) behavior in p-ZnGa2Se4/n-Si nano-crystalline HJD was characterized by admittance-voltage method. The CV, GV and R s V for the studied diode were analysed in the frequency range of 1–5 MHz and in the temperature range of 303–423 K. The capacitance and conductance plots were interpreted in terms of interface states and series resistance. The CV and G/ωV plots exhibit a pounced peak due to the interface states and the series resistance effects. The negative capacitance behavior in the studied diode can be explained in terms of the transient currents.  相似文献   

16.
Cd/CdS/n-Si/Au–Sb structure has been fabricated by the Successive Ionic Layer Adsorption and Reaction (SILAR) method and the influence of the time dependent or ageing on the characteristic parameters are examined. The current–voltage (IV), capacitance–voltage (CV) and capacitance–frequency (Cf) characteristics of the structure have been measured immediately, 1, 3, 5, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150 and 165 days after fabrication of the structure. The characteristic parameters of the structure such as barrier height, ideality factor, series resistance are calculated from the IV measurements and the barrier height, carrier concentration values are calculated from reverse bias C?2V measurements at 500 kHz and room temperature. Furthermore, the density distribution and time constant of the interface states have been calculated from the Cf measurements using the Schottky Capacitance Spectroscopy method as a function of ageing time. It has been seen that the changes of characteristic parameters such as barrier height, ideality factor and series resistance of Cd/CdS/n-Si/Au–Sb structure have lightly changed with increasing ageing time. At the same time, the rectifying ratio of the device increases with ageing time. It can be clearly said that the IV characteristics of device get better with time.  相似文献   

17.
The forward and reverse bias current-voltage (I-V), capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of the Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) have been investigated at room temperature by taking the interface states (Nss) and series resistance (Rs) effects into account. The voltage dependent profiles of resistance (Ri) were obtained from both the I-V and C/G-V measurements by using Ohm’s Law and Nicollian methods. The obtained values of Ri with agreement each other especially at sufficiently high bias voltages which correspond the value of Rs of the diode. Therefore, the energy density distribution profile of Nss was obtained from the forward bias I-V data taking the bias dependence of the effective barrier height (BH) Φe and Rs into account. The high value of ideality factor (n) was attributed to high density of Nss and interfacial polymer layer at metal/semiconductor (M/S) interface. In order to examine the frequency dependence of some of the electrical parameters such as doping donor concentration (ND), Φe, Rs and Nss values, C-V and G/ω-V measurements of the diode were performed at room temperature in the frequency range of 50 kHz-5 MHz. Experimental results confirmed that the Nss, Rs and interfacial layer are important parameters that influence electrical characteristics of SBD.  相似文献   

18.
GaAs thin films were synthesized on porous Si substrate by the electrodeposition technique. The X-ray diffraction studies showed that the as-grown films were crystallised in mixed phase nature orthorhombic and cubic of GaAs. The GaAs film was then electrically characterized using current-voltage (I-V) and capacitance-voltage (C-V) techniques by the way of Al/GaAs Shottky junctions. The electric analysis allowed us to determine the n factor and the barrier height Фb0 parameters of Al/GaAs Schottky junctions. The (C-V) characteristics were recorded at frequency signal 1 MHz in order to identify the effect of the surface states on the behaviour of the capacitance of the device.  相似文献   

19.
In this work we have compared the SiO2/SiC interface electrical characteristics for three different oxidations processes (dry oxygen, water-containing oxygen and water-containing nitrogen atmospheres). MOS structures were fabricated on 8° off-axis 4H-SiC(0 0 0 1) n- and p-type epi-wafers. Electrical characteristics were obtained by I-V measurements, high-frequency capacitance-voltage (C-V) and ac conductance (G-ω) methods. Comparing the results, one observes remarkable differences between samples which underwent different oxidation routes. Among the MOS structures analyzed, the sample which underwent wet oxidation with oxygen as carrier gas presented the higher dielectric strength and lower values of interface states density.  相似文献   

20.
Capacitance–voltage (CV) and conductance–voltage (G/ωV) measurements of the Au/n-GaAs Schottky barrier diodes (SBDs) in the wide frequency range of 10 kHz–10 MHz at room temperature were carried out in order to evaluate the reason of negative capacitance (NC). Experimental results show that C and G/ω are strong functions of frequency and bias voltage especially in the accumulation region. NC behavior was observed in the CV plot for each frequency and the magnitude of absolute value of C increases with decreasing frequency in the forward bias region. Contrary to C, G/ω increases with decreasing frequency positively in this region. NC behavior may be explained by considering the loss of interface charges at occupied states below Fermi level due to impact ionization processes. Such behavior of the C and G/ω values can also be attributed to the increase in the polarization especially at low frequencies and the introduction of more carriers in the structure. The values of Rs decrease exponentially with increasing frequency according to literature. In addition, the values of C and G/ω at 1 MHz were corrected to obtain the real diode capacitance by taking the effect of Rs into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号