首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Ma 《Applied Surface Science》2005,252(5):1679-1684
The effect of Ni interlayer on stress level of cobalt silicides was investigated. The X-ray diffraction patterns (XRD) show that low temperature formation of Co1−xNixSi2 solid solution was obtained while Ni interlayer was present in Co/Si system, which was confirmed by Auger electron spectrum (AES) and sheet resistance measurement. XRD was also used to measure the internal stress in CoSi2 films by a 2θψ − sin2ψ method. The result shows that the tensile stress in CoSi2 films evidently decreased in Co/Ni/Si(1 0 0) system. The reduction of lattice mismatch, due to the presence of Ni in CoxNi1−xSi2 solid solution, is proposed to explain this phenomenon.  相似文献   

2.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

3.
Thin films of Ti1−xCoxO2 (x=0 and 0.03) have been prepared on sapphire substrates by spin-on technique starting from metalorganic precursors. When heat treated in air at 550 and 700 °C, respectively, these films present pure anatase and rutile structures as shown both by X-ray diffraction and Raman spectroscopy. Optical absorption indicate a high degree of transparency in the visible region. Such films show a very small magnetic moment at 300 K. However, when the anatase and the rutile films are annealed in a vacuum of 1×10−5 Torr at 500 and 600 °C, respectively, the magnetic moment, at 300 K, is strongly enhanced reaching 0.36μB/Co for the anatase sample and 0.68μB/Co for the rutile one. The ferromagnetic Curie temperature of these samples is above 350 K.  相似文献   

4.
We present a comprehensive picture of structural and electronic properties of the TiC(0 0 1)(1 × 1) surface. Our investigations are based on first-principles calculations within the local-density approximation of the density-functional theory. Good agreement has been observed between our calculation and experimental data for the atomic geometry of the surface. In particular, the calculated bond lengths between the first-layer C and the second-layer Ti (d1C-2Ti = 2.188 Å) and between the first-layer Ti and the second-layer C (d1Ti-2C = 2.031 Å) are in good agreement with the corresponding experimental values of 2.25 Å and 2.14 Å, respectively. We have also identified surface electronic states and provided clear support for previously available photoemission measurements. We have further calculated surface phonon modes at the zone centre and at the zone-edge point X using a linear response scheme based on the ab initio pseudopotential method. Our calculated surface phonon results are in excellent agreement with electron energy loss spectroscopy results.  相似文献   

5.
We report on tunnelling magnetoresistance (TMR), current–voltage (IV) characteristics and low-frequency noise in epitaxially grown Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) magnetic tunnel junctions (MTJs) with dimensions from 2×2 to 20×20 μm2. The evaluated MgO energy barrier (0.50±0.08 eV), the barrier width (13.1±0.5 Å) as well as the resistance times area product (7±1 MΩ μm2) show relatively small variation, confirming a high quality epitaxy and uniformity of all MTJs studied. At low temperatures (T<10 K) inelastic electron tunneling spectroscopy (IETS) shows anomalies related to phonons (symmetric structures below 100 meV) and asymmetric features above 200 meV. We explain the asymmetric features in IETS as due to generation of electron standing waves in one of the Fe electrodes. The noise power, though exhibiting a large variation, was observed to be roughly anti-correlated with the TMR. Surprisingly, for the largest junctions we observed a strong enhancement of the normalized low-frequency noise in the antiparallel magnetic configuration. This behavior could be related to the influence of magnetostriction on the characteristics of the insulating barrier through changes in local barrier defects structure.  相似文献   

6.
Using density functional theory (DFT) in combination with nudged elastic band (NEB) method, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and Fe-doped Mg(0 0 0 1) surfaces are studied. Firstly, the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier (1.08 eV) of hydrogen molecule on a pure Mg(0 0 0 1) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0 0 0 1) surface, the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe. Then, the diffusion processes of atomic hydrogen on pure and Fe-doped Mg(0 0 0 1) are presented. The obtained diffusion barrier to the first subsurface is 0.45 eV and 0.98 eV, respectively. Finally, Chou method was used to investigate the hydrogen sorption kinetic mechanism of pure MgH2 and Mg mixed with 5 at.% Fe atoms composites. The obtained activation energies are 0.87 ± 0.02 and 0.31 ± 0.01 eV for H2 dissociation on the pure surface and H atom diffusion in Fe-doped Mg surfaces, respectively. It suggests that the rate-controlling step is dissociation of H2 on the pure Mg surface while it is diffusion of H atom in the Fe-doped Mg surface. And both of fitting data are matching well with our calculation results.  相似文献   

7.
We investigated the growth of Fe nanostructured films on c(2 × 2)-N/Cu(1 0 0) surface with Fe K-edge X-ray absorption fine structure (XAFS) in the near edge and in the extended energy region. The high photon flux of the incident X-rays allowed us to perform multishell analysis of the XAFS oscillations for Fe coverage ΘFe < 1 ML. This data analysis yields a detailed investigation of the atom geometry and some insights in the film morphology. At ΘN < 0.5 ML (N saturation coverage) there is absence of contribution to XAFS from N atoms. First shell analysis of linearly polarized XAFS gives Fe-Fe (or Fe-Cu) bond length values varying between R1 = 2.526 ± 0.006 Å at the highest Fe coverage (3 ML ) and R1 = 2.58 ± 0.01 Å at ΘFe = 0.5 ML, ΘN = 0.3 ML, with incidence angle Θ = 35°. These values are different from the case of bcc Fe (R = 2.48 Å), and compatible with fcc Fe (R1 = 2.52 Å) and fcc Cu (R1 = 2.55 Å). At the Fe lowest coverage (ΘFe = 0.5 ML) the dependence of R1 on the incidence angle indicates expansion of the outmost layer. Near edge spectra and multishell analysis can be well reproduced by fcc geometry with high degree of static disorder. At N saturation pre-coverage (ΘN = 0.5 ML) the XAFS analysis has to keep into account the Fe-N bonding. The results suggest two different adsorption sites: one with Fe in a fcc hollow site, surrounded by other metal atoms as nearest neighbours, and one resulting from an exchange with a Cu atom underneath the N layer.  相似文献   

8.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

9.
We propose a dry method of cleaning Ge(1 0 0) surfaces based on nitrogen plasma treatment. Our in situ Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED) analyses demonstrate that surface contamination remaining after wet treatment was effectively removed by nitrogen radical irradiation at low substrate temperatures. The nitrogen plasma cleaned Ge(1 0 0) surface shows a well-ordered 2 × 1 reconstruction, which indicates the formation of a contamination-free Ge(1 0 0) surface with good crystallinity. We discuss the possible reaction mechanism considering how chemisorbed carbon impurities are removed by selective C-N bond formation and subsequent thermal desorption. These findings imply the advantage of plasma nitridation of Ge surfaces for fabricating nitride gate dielectrics, in which we can expect surface pre-cleaning at the initial stage of the plasma treatment.  相似文献   

10.
We present experimental results on the structural and magnetic properties of series of Fe thin films evaporated onto Si(1 1 1), Si(1 0 0) and glass substrates. The Fe thickness, t, ranges from 6 to110 nm. X-ray diffraction (XRD) and atomic force microscopy (AFM) have been used to study the structure and surface morphology of these films. The magnetic properties were investigated by means of the Brillouin light scattering (BLS) and magnetic force microscopy (MFM) techniques. The Fe films grow with (1 1 0) texture; as t increases, this (1 1 0) texture becomes weaker for Fe/Si, while for Fe/glass, the texture changes from (1 1 0) to (2 1 1). Grains are larger in Fe/Si than in Fe/glass. The effective magnetization, 4πMeff, inferred from BLS was found to be lower than the 4πMS bulk value. Stress induced anisotropy might be in part responsible for this difference. MFM images reveal stripe domain structure for the 110 nm thick Fe/Si(1 0 0) only.  相似文献   

11.
Fine (oscillating) structure (FS) in the elastically scattered electron spectra (ESES) [O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Sci. 258 (1991) 239; O. Bondarchuk, S. Goysa, I. Koval, P. Melnik, M. Nakhodkin, Surf. Rev. Lett. 4 (1997) 965] was used to investigate surface structure of the SiOx (0 ≤ x ≤ 2). SiOx surface with different stoichiometry was prepared by implantation of 500 eV oxygen ions into a silicon wafer. Fourier transformation of the FS ESES contains one peak at 2.32 Å for Si, two peaks at 1.62 Å and 2.65 Å for a-SiO2 and three peaks centered at 1.6-1.7 Å, 2.1-2.2 Å and 2.65-3.04 Å for SiOx. Peaks at 1.62 Å and 2.65 Å are assigned to Si-O and O-O nearest distances correspondently. Ratio of the area under the peak at 2.65 Å to the area under the peak at 1.62 Å turned out to be not constant but grows linearly with the composition parameter x. The latter is considered to prove validity of the Random Bond Model to describe short-range order on the surface of non-stoichiometric silicon oxide.  相似文献   

12.
In a temperature dependent neutron powder diffraction (NPD) study we observed the high temperature cubic phase at 973 K in the polycrystalline double perovskite Sr2MnWO6. Rietveld analysis of the NPD data shows that the room temperature tetragonal phase exists up to 573 K (space group P42/n, a=8.0119 (4) Å, c=8.0141(8) Å). At 773 K, the primitive tetragonal symmetry change to body-centred tetragonal (space group I4/m, a=5.6935(5) Å, c=8.077(1) Å) and finally at 973 K it becomes face-centred cubic (space group Fm-3m, a=8.0864(8) Å). The changes in the structural symmetry are connected to the small distortion of the B-site octahedra, which are insensitive to the Differential Thermal Analysis (DTA) signal.  相似文献   

13.
Series of CoxCr1−x thin films have been evaporated under vacuum onto Si (1 0 0) and glass substrates. Chemical composition and interface properties have been studied by modelling Rutherford backscattering spectra (RBS) using SIMNRA programme. Thickness ranges from 17 to 220 nm, and x from 0.80 to 0.88. Simulation of the energy spectra shows an interdiffusion profile in the thickest films, but no diffusion is seen in thinner ones. Microscopic characterizations of the films are done with X-ray diffraction (XRD) measurements. All the samples are polycrystalline, with an hcp structure and show a 〈0 0 0 1〉 preferred orientation. Atomic force microscopies (AFM) reveal very smooth film surfaces.  相似文献   

14.
We consider the possibility of a control field opening up multiple pathways and thereby leading to new interference and coherence effects. We illustrate the idea by considering the J = 1/2 ↔ J = 1/2 transition. As a result of the additional pathways, we show the possibilities of nonzero refractive index without absorption and gain without inversion. We explain these results in terms of the coherence produced by the opening of an extra pathway.  相似文献   

15.
The nitrogen 1s near-edge X-ray absorption fine structure (NEXAFS) spectra of the N2O adsorbed on Ag(1 1 0) have been studied by the multiple-scattering cluster (MSC) and self-consistent field (SCF) DV-Xα methods. Two adsorption models, in which the N2O molecule attached to the Ag substrate through the central nitrogen (NC) atom and the terminal nitrogen (NT) atom, respectively, have been checked up thoroughly. The MSC calculation and the R-factor analysis show that the N2O molecule is attached to the Ag substrate through the terminal nitrogen atom with the adsorption height h = 3.4 ± 0.1 Å. In the overlayer the N2O molecules arrange themselves into a tilted chain due to the interaction between the cations and the anions in the molecules. The physical cause of the resonances in the NEXAFS spectra mentioned above has been discussed by the DV-Xα method, which confirms the MSC calculations.  相似文献   

16.
ZnO thin film with strong orientation (0 0 2) and smooth surface morphology was electrosynthesized on ITO-coated glass substrate at room temperature under pulsed voltage. Photoluminescence (PL) shows two obvious peaks: violet band and strong green band. The former is due to the free-excitonic transition and the latter is believed to arise from the single ionized oxygen vacancy (VO+). Raman scattering reveals that the 580 cm−1 mode and the shoulder peak mode at 550 cm−1 originate from the N-related local vibration mode (LVM) and E1 (LO) mode, respectively.  相似文献   

17.
GaN have sphalerite structure (Cubic-GaN) and wurtzite structure (hexagonal GaN). We report the H-GaN epilayer with a LT-AlN buffer layer has been grown on Si(1 1 1) substrate by metal-organic chemical vapor deposition (MOCVD). According to the FWHM values of 0.166° and 14.01 cm−1 of HDXRD curve and E2 (high) phonon of Raman spectrum respectively, we found that the crystal quality is perfect. And based on the XRD spectrum, the crystal lattice constants of Si (a = 5.3354 ?) and H-GaN (aepi = 3.214 ?, cepi = 5.119 ?) have been calculated for researching the tetragonal distortion of the sample. These results indicate that the GaN epilayer is in tensile strain and Si substrate is in compressive strain which were good agreement with the analysis of Raman peaks shift. Comparing with typical values of screw-type (Dscrew = 7 × 108 cm−2) and edge-type (Dedge = 2.9 × 109 cm−2) dislocation density, which is larger than that in GaN epilayers growth on SiC or sapphire substrates. But our finding is important for the understanding and application of nitride semiconductors.  相似文献   

18.
Recently, tetramantane, a member of diamondoid series (C4n+6H4n+12), has shown to exhibit negative-electron-affinity effect which has a potential use for efficient electron emitting devices. Here, we explore the electronic property of adamantane (C10H16), the smallest member of the series. We prepare adamantane films on Si(1 1 1) substrates and then study their electronic structure with photoemission spectroscopy. Photoelectron spectra of adamantane on Si(1 1 1) have shown a peak at low-kinetic energy which could be a generic property of diamondoids. The possibility of the negative-electron-affinity effect in adamantane is further discussed.  相似文献   

19.
A series of exchange-biased magnetic tunneling junctions (MTJs) were made in an in-plane deposition field (h) = 500 Oe. The deposition sequence was Si(1 0 0)/Ta(30 Å)/CoFeB(75 Å)/AlOx(d Å)/Co(75 Å)/IrMn(90 Å)/Ta(100 Å), where d was varied from 12 Å to 30 Å. The MTJ was formed by the cross-strip method with a junction area of 0.0225 mm2. The tunneling magnetoresistance (ΔR/R) of each MTJ was measured. The high-resolution cross-sectional transmission electron microscopic (HR X-TEM) image shows the very smooth interface and clear microstructure. X-ray diffraction (XRD) demonstrates that the IrMn layer of the MTJ exhibits a (1 1 1) texture. From the results (ΔR/R) increases from 17% to 50%, as d increases from 12 Å to 30 Å. The tunneling resistance (Ro) of these junctions ranges from 150 Ω to 250 Ω. The exchange-biasing field (Hex) of the MTJ is 50-95 Oe. Finally, the saturation resistance (Rs) was measured as a function of the angle (α) of rotation, where α is the angle between h and the in-plane saturation field (Hs) = 1.1 kOe. The following figure presents the dependence of Rs on α, instead of originally expected independence, the curve actually varies with a period of π.  相似文献   

20.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号