首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

2.
Ce3+ and Tb3+ co-doped Sr2B5O9Cl phosphors with intense green emission were prepared by the conventional high-temperature solid-state reaction technique. A broad band centered at about 315 nm was found in phosphor Sr2B5O9Cl: Ce3+, Tb3+ excitation spectrum, which was attributed to the 4f-5d transition of Ce3+. The typical sharp line emissions ranging from 450 to 650 nm were originated from the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. The photoluminescence (PL) intensity of green emission from Tb3+ was enhanced remarkably by co-doping Ce3+ in the Tb3+ solely doped Sr2B5O9Cl phosphor because of the dipole-dipole mechanism resonant energy transfer from Ce3+ to Tb3+ ions. The energy transfer process was investigated in detail. In light of the energy transfer principles, the optimal composition of phosphor with the maximum green light output was established to be Sr1.64Ce0.08Tb0.1Li0.18B5O9Cl by the appropriate adjustment of dopant concentrations. The PL intensity of Tb3+ in the phosphor was enhanced about 40 times than that of the Tb3+ single doped phosphor under the excitation of their optimal excitation wavelengths.  相似文献   

3.
In this study, a solution combustion method was used to prepare green emitting Ce3+–Tb3+ co-activated ZnAl2O4 phosphor. The samples were annealed at 700 °C in air or hydrogen atmosphere to improve their crystallinity and optical properties. X-ray diffraction study confirmed that both as-prepared and post-preparation annealed samples crystallized in the well known cubic spinel structure of ZnAl2O4. An agglomeration of irregular platelet-like particles whose surfaces were encrusted with smaller spheroidal particles was confirmed by scanning electron microscopy (SEM). The fluorescence data collected from the annealed samples with different concentrations of Ce3+ and Tb3+ show the enhanced green emission at 543 nm associated with 5D47F5 transitions of Tb3+. The enhancement was attributed to energy transfer from Ce3+ to Tb3+. Possible mechanism of energy transfer via a down conversion process is discussed. Furthermore, cathodoluminescence (CL) intensity degradation of this phosphor was also investigated and the degradation data suggest that the material was chemically stable and the CL intensity was also stable after 10 h of irradiation by a beam of high energy electrons.  相似文献   

4.
LaBaB9O16 phosphors activated by various ions belonging to ns2, 3dn and 4fn configurations were prepared by combustion synthesis. Phosphors’ synthesis and luminescence spectra are reported. Most of the activators displayed intense characteristic emission. Pr3+→Gd3+, Ce3+→Tb3+, Ce3+→Dy3+, Ce3+→Mn2+ and Bi3+→Mn2+ energy transfers were also observed. In particular, Ce3+→Tb3+ energy transfer leads to an efficient green emitting phosphor.  相似文献   

5.
The white-light long-lasting phosphors Y2O2S:Tb3+, Sr2+ or/and Zr4+ were prepared and studied. The white-light afterglow emission after the irradiation with 254 nm UV are composed of the blue light emission and the yellowish-green light emission, originating from the transitions of 5D37F5, 5D47F5 in Tb3+ when the Tb3+ concentration is not higher than 0.3 at%. The codoped Sr2+ and Zr4+ ions act as trap-creating ions. The afterglow can last over 21 min in the dark for Y2O2S:Tb3+0.3%, Sr2+4%, Zr4+4% after irradiation by 254 nm ultraviolet light. Y2O2S:Tb3+ may be a promising material for the development of white-light long-lasting phosphor since the Tb3+ has a high luminescent efficiency and the dominant excitation band of 4f →5d is located at 220-300 nm.  相似文献   

6.
This paper reports the emission analysis of green-emitting Tb3+-doped MgAl2O4 phosphors. Uniformity of the phase of the Tb3+-doped MgAl2O4 phosphor has been checked by X-ray diffraction (XRD) technique and show common bands existing in the results of Fourier transform infrared (FT-IR). This phosphor exhibits weak blue, orange emissions and a strong emission at λexci=350 nm. The blue and green-orange emissions are ascribed to 5D37FJ and 5D47FJ (where J=3-6) transitions of Tb3+ ions, respectively. These phosphors have shown a strong, more prominent green emission from 5D47F5 at 543 nm. The results have indicated that MgAl2O4:Tb3+ could be a potential candidate as agreen-emitting powder phosphor.  相似文献   

7.
CePO4:Tb nanorods were synthesized via a simple wet-chemical route. The as-synthesized CePO4:Tb nanorods present high photoluminescence efficiency due to an efficient energy transfer form Ce3+ to Tb3+. However, heat treatment at 150 °C in air leads to a significant decrease of photoluminescence. X-ray photoelectron spectroscopy and excitation spectra revealed the oxidation of Ce3+ to Ce4+ in the heat-treatment process, which should be responsible for significant photoluminescence degradation due to the breakage of Ce3+→Tb3+ energy transfer. This conclusion is further supported by atmosphere and size effects of photoluminescence of CePO4:Tb under the heat treatment.  相似文献   

8.
Yttrium aluminum garnet (YAG) particles doped with Tb3+ or double doped with Tb3+ and Ce3+ were prepared by spray pyrolysis and characterized by photo- and cathode-luminescence. It was tried to incorporate a broad band of Ce3+ activator into the line peaks of Tb3+ in YAG host without the reduction of emission intensity. Ce-codoped YAG:Tb particles showed a broad band emission due to the d-f transition of Ce3+ and a reduction in the intensity of emission peaks due to 5D3-7Fj (j=3, 4, 5, 6) transition of Tb3+ when they were excited by the ultraviolet light of 270 nm. These results supported that an effective energy transfer occurs from Tb3+ to Ce3+ in YAG host. Codoping Ce3+ ions greatly intensified the excitation peak at 270 nm for the emission at 540 nm of Tb3+, which means that more lattice defects, involving in the energy absorption and transfer to Tb3+, are formed by the Ce3+ codoping. The finding gives a promising approach for enhancing the luminescence efficiency.  相似文献   

9.
YBO3:Eu3+/Tb3+ nanocrystalline thin films were successfully deposited onto quartz glass substrates by Pechini sol-gel dip-coating method, using rare-earth nitrates and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence property of the films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and fluorescence spectrophotometer. The results of XRD, AFM, XPS and FTIR revealed that the films were composed of spherical YBO3:Eu3+/Tb3+ nanocrystals with average grain size of 80 nm. The YBO3:Eu3+ film exhibited strong orange emission at 595 nm and red emission at 615 nm, which were, respectively ascribed to the (5D07F1) and (5D07F2) transitions of Eu3+. The YBO3:Tb3+ film showed dominant green emission at 545 nm due to the 5D4-7F5 transition of Tb3+.  相似文献   

10.
We have enhanced color-rendering property of a blue light emitting diode (LED) pumped white LED with yellow emitting Y3Al5O12:Ce3+ (YAG:Ce) phosphor using addition of Pr and Tb as a co-activator and host lattice element, respectively. Pr3+ addition to YAG:Ce phosphor resulted in sharp emission peak at about 610 nm through 1D23H4 transition. And when Tb3+ substituted Y3+ sites, Ce3+ emission band shifted to a longer wavelength due to larger crystal field splitting. Y3Al5O12:Ce3+, Pr3+ and (Y1−xTbx)3Al5O12:Ce3+ phosphors were coated on blue LEDs to fabricate white LEDs, respectively, and their color-rendering indices (CRIs, Ra) were measured. As a consequence of the addition of Pr3+ or Tb3+, CRI of the white LEDs improved to be Ra=83 and 80, respectively. Especially, blue LED pumped (Y0.2Tb0.8)3Al5O12:Ce3+ white LED showed both strong luminescence and high color-rendering property.  相似文献   

11.
Crystal fibers of Ce3+ and Tb3+ singly doped and co-doped CaAl4O7 were grown by the LHPG method. Photoluminescence, excitation spectra and photoconduction were measured. Thermo-stimulated photo-ionization (delocalization) of electrons from the lowest field component of the 5d excited state of Ce3+ was observed in the Ce3+ singly doped sample under excitation at 355 nm. The 5d sublevel was found to locate at 0.3 eV below the conduction band of the host. However, the thermo-stimulated photo-ionization was greatly quenched due to the fast energy transfer from the 5d sublevel to Tb3+ ions in the Ce3+/Tb3+ double doped sample.  相似文献   

12.
The photoluminescence properties of Eu2+, Ce3+ and Tb3+ doped α-Si3N4 have been studied and a possible structural model has been proposed on the basis of the Rietveld refinement of X-ray powder diffraction data. Nearly single phase rare earth doped α-Si3N4 was synthesized by a solid state reaction at 1600 °C in N2-H2 atmosphere starting from amorphous Si3N4 and rare earth oxides or nitrides. Because of small crystal field splitting of the 5d levels, the excitation and emission bands of Eu2+ and Ce3+ are positioned at higher energies as isolated ions in comparison with that in Ca-α-Sialon. Both Eu2+- and Ce3+-doped α-Si3N4 show blue band emission peaking at about 470 and 450 nm, respectively, under UV excitation. α-Si3N4:Tb3+ exhibits dominant green line emission mainly arising from 5D47FJ (J=6-3) with weak 5D37FJ (J=6-3) transitions of Tb3+ when excited by UV light. The thermal stability of α-Si3N4:Eu2+ is comparable with that of Ca-α-Sialon:Eu2+ and is much better than that of α-Si3N4:Ce3+.  相似文献   

13.
Tb-doped SrSi2O2N2 phosphors with promising luminescent properties were synthesized by the conventional solid-state reaction method, characterized by powder X-ray diffraction and studied by photoluminescence excitation and emission spectra. The synthesized materials exhibited a weak blue emission and a strong green emission in the region of 400-470 nm and 480-650 nm, which are attributed to 5D37Fj (j=5, 4, 3) and 5D47Fj (j=6, 5, 4, 3) transitions of Tb3+, respectively. The green emission from 5D47F5 at 543 nm showed the highest intensity under the optimized concentration of 0.1 mol, after which the quenching concentration became relevant. The quenching behavior of the emission of Tb3+ was explained by the cross-relaxation of its excited state.  相似文献   

14.
Ce3+, Tb3+ codoped amorphous calcium silicate phosphor was prepared by heating (830 °C for 30 min) Ce3+, Tb3+ codoped calcium silicate hydrate phosphor formed by liquid-phase reaction. The excitation peak wavelength of the resulting phosphor was 330 nm and the emission peak wavelengths were at 544 nm, attributed to the 5D47F5 transition of Tb3+, and at 430–470 mm, attributed to Ce3+. The intensity ratio of the two peaks could be freely controlled by varying the Tb/Ca atomic ratio of the Ce3+, Tb3+ codoped amorphous calcium silicate phosphor, allowing light to be emitted over a wide range from blue to green. It was clarified that energy transfer exists from Ce3+ to Tb3+.  相似文献   

15.
A novel green-emitting nano-sized phosphor, Tb3+-doped GdCaAlO4 was synthesized with a precursor prepared by citrate sol-gel method at relatively low temperature. Powder X-ray diffraction (XRD) analysis confirmed the formation of GdCaAlO4. Field-emission scanning electron microscopy (FE-SEM) observation indicated a narrow size-distribution of about ∼100 nm for the particles with a spherical shape. Upon excitation with near UV and vacuum ultraviolet (VUV) light, the phosphor showed strong green-emission peaked at around 546 nm, corresponding to the 5D47F5 transition of Tb3+, and the highest photoluminescence (PL) intensity at 546 nm was found at a content of about 12 mol% Tb3+. As the Tb3+ concentration increases, the fast diffusion of energy among terbium ions toward traps or impurities resulting in a decrease of the lifetime. The optical properties study suggests that it is a potential candidate for plasma display panels (PDPs) application.  相似文献   

16.
Upconversion emission and energy transfer processes in singly, doubly and triply doped tellurite glasses have been studied under 798 and 980 nm laser excitations. Emissions have been observed at 482, 544, 584, 655 nm and at 477, 655, 698, 800 nm corresponding to Tb3+: 5D4 → 7F6, 7F5, 7F4, 7FJ (J = 0, 1, 2, 3) and Tm3+: 1G4 → 3H6, 1G4 → 3F4, 3F3 → 3H6, 3H4 → 3H6 transitions, respectively. Among Tm3+, Yb3+and Tb3+ ions only Tm3+ has a ground state absorption at 798 nm excitation due to 3H4 ← 3H6 transition. For 980 nm excitation only Yb3+ can absorb the incident radiation. However, for both types of excitations, emission from all the three ions Tb, Yb and Tm has been observed. Possible mechanisms are proposed as follows: under 798 nm excitation Tm3+ ions are excited which excite Yb3+ ions through energy transfer. Finally “cooperative energy transfer” from a pair of Yb3+ ions to Tm3+ and Tb3+ ions takes place. Under 980 nm excitation Yb3+ ions absorb the incident energy and excite Tm3+ and Tb3+ ions via cooperative energy transfer. Variation of emission intensity with the ion concentrations of Yb3+, Tm3+ and Tb3+ has been studied. The lifetime of the 1G4 level has also been measured.  相似文献   

17.
Spectroscopic properties of Ce3+ and Pr3+-doped AREP2O7-type alkali rare earth diphosphates (A=Na, K, Rb, Cs; RE=Y, Lu) have been investigated using VUV spectroscopy technique. Ce3+-doped samples show typical Ce3+ emission in the range of 325-450 nm. The strong host absorption band starting at around 160 nm indicates that the optical band gap of AREP2O7 hosts is at least 7.7 eV, and the host→Ce3+ energy transfer process is rather efficient. However, AREP2O7:Pr3+ samples show less efficient host→Pr3+ energy transfer. The direct Pr3+ 4f2→4f15d1 excitation, which are 12160±640 cm−1 higher respect to that of Ce3+, leads to strong 4f15d1→4f2 emission bands in the range of 230-325 nm but no obvious 4f2→4f2 emission lines.  相似文献   

18.
The effect of Ce3+ and Pr3+ ions on spectral-kinetic characteristics of luminescence of lithium–phosphate–borate glasses is studied. It is shown that terbium ion luminescence caused by transitions from 5D3 and 5D4 multiplets to the ground 7FJ term is detected in samples containing Tb3+/Ce3+ and Tb3+/Pr3+. It has been found that an increase in the concentration of cerium ions from 0.2 to 1 wt % leads to an increase in the intensity of main luminescence bands of terbium ions. In Tb3+/Pr3+ glasses, a decrease in the relative light yield is observed with an increase in the concentration of Pr3+ ions. Processes of energy transfer between Tb3+/Ce3+ and Tb3+/Pr3+ ions are discussed.  相似文献   

19.
The optical properties of Ba1.6Ca0.4P2O7 doped with Ce3+ and Tb3+ are investigated. Under excitation at 280 nm the emission spectrum of Ba1.6Ca0.4P2O7:Ce3+ consists of a peak at 370 nm and a shoulder at the longer wavelength side. The emission spectra of Ba1.6Ca0.4P2O7:Tb3+ shows the well-known emission lines due to 5D4-7FJ transitions of Tb3+. The green emissions of Tb3+ ions are enhanced upon UV excitation through energy transfer from Ce3+ to Tb3+ ions. The efficiency of such an energy transfer is estimated based on spectroscopic data. The dependence of photoluminescence (PL) intensities of Ce3+ and Tb3+ emissions on Ce3+ or Tb3+ concentrations in the systems (Ba1.6Ca0.4P2O7:0.04Ce3+,xTb3+ and Ba1.6Ca0.4P2O7:xCe3+,0.04Tb3+) and the temperature dependence of PL emission spectra of Ba1.6Ca0.4P2O7:0.06Ce3+,0.04Tb3+ is also investigated.  相似文献   

20.
This paper reports that KI doped with Ce3+ or double doped with Tb3+ and Ce3+ were prepared by the Bridgman-Stockbarger method and characterized by optical absorption photoluminescence (PL), thermoluminescence (TL), photostimulated emission (PSL) and TL emission. The optical absorption measurement indicates that F and V1, V2 centers are formed in the crystals during the γ irradiation process. It was attempted to incorporate a broad band of Ce3+ activator into the narrow band emission of Tb3+ in the KI host without the reduction of emission intensity. Ce3+-co-doped KI and Tb crystals showed a broad band emission due to the d-f transition of Ce3+ and a reduction in the intensity of emission peaks due to the 5D3-7Fj (j=3,4,5,6) transition of Tb3+, when they were excited at 240 nm.These results supported that an effective energy transfer occurs from Tb3+ to Ce3+ in the KI host. Co-doping Ce3+ ions greatly intensified the excitation peak at 260 nm for the emission at 393 nm of Tb3+, which means that more lattice defects, involved in the energy absorption and transfer to Tb3+, are formed by the Ce3+ co-doping. The integrated light intensity is an order of magnitude higher as compared to the undoped samples for similar doses of irradiation and heating rates. The defects generated by irradiation were monitored by optical absorption and TSL Trap parameters for the TL process are calculated and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号