首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Based on the effective-mass approximation, we have calculated the donor binding energy of a hydrogenic impurity in zinc-blende (ZB) GaN/AlN coupled quantum dots (QDs) using a variational method. Numerical results show that the donor binding energy is highly dependent on the impurity position and coupled QDs structural parameters. The donor binding energy is largest when the impurity is located at the center of quantum dot. When the impurity is located at the interdot barrier edge, the donor binding energy has a minimum value with increasing the interdot barrier width.  相似文献   

2.
Based on the effective-mass approximation, the donor binding energy in a cylindrical zinc-blende (ZB) symmetric InGaN/GaN coupled quantum dots (QDs) is investigated variationally in the presence of an applied electric field. Numerical results show that the ground-state donor binding energy is highly dependent on the impurity positions, coupled QDs structure parameters and applied electric field. The applied electric field induces an asymmetric distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located at the center of the right dot, the donor binding energy has a maximum value with increasing the dot height. Moreover, the donor binding energy is the largest and insensitive to the large applied electric field (F?400 kV/cm) when the impurity is located at the center of the right dot in ZB symmetric In0.1Ga0.9N/GaN coupled QDs. In addition, if the impurity is located inside the right dot, the donor binding energy is insensitive to large middle barrier width (Lmb?2.5 nm) of ZB symmetric In0.1Ga0.9N/GaN coupled QDs.  相似文献   

3.
I report electronic structures and the cohesive energy for face-centered-cubic (fcc) solid C48N12 using generalized-gradient density-functional theory. The full vibrational spectrum of the C48N12 cluster is calculated within the harmonic approximation at the B3LYP/6-31G* level of theory. The results show that fcc is energetically preferred and a more stable crystal form than body-centered-cubic (bcc). C48N12 clusters are found to condense by a weak (0.29 eV) van der Waals force. The band gap of fcc C48N12 is calculated to be 1.3 eV at the GGA-PW91 level, whereas the HOMO-LUMO gap is calculated to be 2.74 eV using B3LYP/6-31G*.  相似文献   

4.
Binding energies of ground and a few low lying excited states of a hydrogenic donor confined in a zinc-blende GaN/AlGaN quantum well are investigated. They are computed within the framework of single band effective mass approximation, by means of a variational approach. The donor states are investigated with the various impurity positions as a function of well width. The calculations have been carried out with the inclusion of conduction band non-parabolicity through the energy dependent effective mass. The variational solutions have been improved by using a two-parametric trial wavefunction. The results seem better and good agreement with the other investigators. To support our results, we observe that the values of variational parameters are consistent when two parameter wave function is used. We find that the inclusion of non-parabolic effects leads to more binding for all the values of well width and is significant for narrow wells. The results are compared with the existing available literature.  相似文献   

5.
The electronic band structures of wurtzite GaN with Ga and N vacancy defects are investigated by means of the first-principles total energy calculations in the neutral charge state. Our results show that the band structures can be significantly modified by the Ga and N vacancies in the GaN samples. Generally, the width of the valence band is reduced and the band gap is enlarged. The defect-induced bands can be introduced in the band gap of GMV due to the Ga and N vacancies. Moreover, the GaN with high density of N vacancies becomes an indirect gap semiconductor. Three defect bands due to Ga vacancy defects are created within the band gap and near the top of the valence band. In contrast, the N vacancies introduce four defect bands within the band gap. One is in the vicinity of the top of the valence band, and the others are near the bottom of the conduction band. The physical origin of the defect bands and modification of the band structures due to the Ga and N vacancies are analysed in depth.  相似文献   

6.
The binding energies of the hydrogenic impurity in wurtzite InGaN coupled quantum dots (QDs) are calculated by means of a variational method, considering the strong built-in electric field induced by the spontaneous and piezoelectric polarizations. Numerical results show that the strong built-in electric field induces an asymmetrical distribution of the donor binding energy with respect to the center of the coupled QDs. When the impurity is located in the center of the left dot, the donor binding energy is largest and insensitive to the barrier height of the wurtzite InGaN coupled QDs.  相似文献   

7.
The ground state donor binding energy is estimated using the simple first order perturbation method for a GaAs-Al x Ga1−x As spherical quantum dot. The calculated energy is computed as a function of Al-concentration. Donor binding energy is found to be quite sensitive to Al-concentration (x), specifically for smallx. Furthermore, the binding energy is found to be highest for the smallest and the center-doped dot indicating the strongest confinement in those cases.  相似文献   

8.
9.
Hydrogen sensing characteristics of thick films of nanoparticles (∼35 nm diameter) of ZnO, 3% Co doped ZnO, 1% Pt-impregnated ZnO and 1% Pt-impregnated 3% Co-ZnO have been investigated. The last composition exhibits the highest sensitivity for 10-1000 ppm H2, reaching values upto 1700 as well as good response and recovery times at 125 °C or lower. The sensor is not affected significantly upto 50% relative humidity.  相似文献   

10.
The binding energy of an impurity located at the center of multilayered spherical quantum dot (MSQD) is reported as a function of the dot and barrier thickness for different alloy compositions under the influence of a magnetic field. Within the effective mass approximation, the binding energy has been calculated using the fourth order Runge-Kutta method without magnetic field. A variational approach has been employed if a magnetic field is present. The binding energy in MSQD with equal dot and barrier thickness is calculated. It is shown that the binding energy in MSQD differs from that of a single quantum dot. Also, the geometry is dominant on the binding energy for thin MSQDs, but the magnetic field becomes more effective for thick MSQDs.  相似文献   

11.
GaN nanowires doped with 2at.% and 6at.% Cu ions are synthesized by chemical vapour deposition method. Structural and compositional analyses demonstrate that the as-grown nanowires are of single crystal wurtzite GaN structure. Magnetic characterizations reveal that the doped GaN nanowires exhibit room temperature ferromagnetism. The measured saturation magnetic moments are 0.37ug and 0.47ug per Cu atom at 300 K for Cu 2 at. % and 6 at. %, respectively. The photoluminescence spectra show that Cu dopant can tune the band gap of the GaN, which leads to a red shift of band-edge emission with increasing dopant concentration.  相似文献   

12.
We report X-ray absorption near edge structures (XANES) study of CeAl2 thin films of various thicknesses, 40-120 nm, at Al K- and Ce L3-edges. The threshold of the absorption features at the Al K-edge shifts to the higher photon energy side as film thickness decreases, implying a decreased in Al p-orbital charges. On the other hand, from Ce L3-edge spectra, we observed a decrease in the 5d4f occupancy as the surface-to-bulk ratio increases. The valence of Ce in these thin films, as revealed by the Ce L3-edge spectral results, is mainly trivalent. From a more detailed analysis we found a small amount of Ce4+ contribution, which increases with decreasing film thickness. Our results indicate that the surface-to-bulk ratio is the key factor which affects the electronic structure of CeAl2 thin films. The above observations also suggest that charge transfer from Al to Ce is associated with the decrease of the film thickness.  相似文献   

13.
We report that the aluminium vacancy in wurtzite AlN brings about two impurity levels e and a2 in the band gap, not just one single t2 level. The aluminium vacancy carries a magnetic moment of 1μB in the ground state. The molecule orbit of the aluminium vacancy becomes e↑↑a2 rather than e↑↑a2. The calculation is carried out by using the CASTEP code. The intrinsic symmetry of wurtzite AlN is the driving force for this spin splitting. Finally the symmetry of wurtzite AlN results in an anti-ferromagnetic coupling between the aluminium vacancies, as is predicted. Our findings are helpful to gain a more through understanding of the structural and spin property of aluminium vacancy in wurtzite AlN.  相似文献   

14.
15.
We have carried out a photoemission study using synchrotron radiation of dodecanethiolate (DT)-passivated Au nanoparticles supported on the highly oriented pyrolytic graphite substrates. From detailed line-shape analyses of Au 4f core-level photoemission spectra of DT-passivated Au nanoparticles, it was found that Au 4f core-level spectra consist of two components. We attribute these components to the inner Au atoms and surface Au atoms bonded to surface dodecanethiolates. From these results, we discuss the chemical states of the present DT-passivated Au nanoparticles.  相似文献   

16.
Within the framework of effective-mass approximation, the binding energy of a hydrogenic donor impurity in a zinc-blende (ZB) InGaN/GaN cylindrical quantum dot (QD) is investigated using a variational procedure. Numerical results show that the donor binding energy is highly dependent on impurity position and QD size. The donor binding energy Eb is largest when the impurity is located at the center of the QD. The donor binding energy is decreased when the dot height (radius) is increased.  相似文献   

17.
A red-light AIGalnP light emitting diode (LED) is fabricated by using direct wafer bonding technology. Taking N-GaN wafer as the transparent substrate, the red-light LED is flip-chiped onto a structured silicon submount. Electronic luminance (EL) test reveals that the luminance flux is 130% higher than that of the conventional LED made from the same LED wafer. Current-voltage (I- V) measurement indicates that the bonding processes do not impact the electrical property of AIGalnP LED in the small voltage region (V 〈 1.5 V). In the large voltage region (V 〉 1.5 V), the I-V characteristic exhibits space-charge-limited currents characteristic due to the p-GaAs/n-GaN bonding interface.  相似文献   

18.
Electronic structure calculations were performed for substitutional erbium rare-earth impurity in cubic GaN using density-functional theory calculations within the LSDA+U approach (local spin-density approximation with Hubbard-U corrections). The LSDA+U method is applied to the rare-earth 4f states. The ErxGa1−xN is found to be a semiconductor, where the filled f-states are located in the valence bands and the empty ones above the conduction band edge. The filled and empty f-states are also shown to shift downwards and upwards in the valence and conduction bands, respectively, with increase in the U potentials.  相似文献   

19.
The properties of a light-induced absorption (LIA) change were investigated in a semi-insulating Fe-doped GaN crystal. The temporal profile and a spectrum of the LIA were measured in the temperature range from 15 K to 300 K. The LIA was almost proportional to the light intensity and showed slight saturation behavior. The relaxation time constant, in the range of milliseconds, was equal to the lifetime of infrared photoluminescence related to the Fe3+ internal transition Fe3+(4T1)→Fe3+(6A1). The LIA was attributed to an excited-state absorption from Fe3+(4T1). Some of the peak energies observed in the LIA spectrum showed good agreement with transition energies expected from an energy diagram of Fe-doped GaN crystal.  相似文献   

20.
We have investigated the effects of the magnetic field which is applied perpendicular to the growth direction of the well on the interband absorption and on the binding energy of the excitons in an GaAs/Ga1−xAlxAs inverse parabolic quantum well (IPQW) with different widths as well as different Al concentrations at the well center. The calculations were performed within the effective mass approximation, using a variational method. We observe that IPQW structure turns into parabolic quantum well with the inversion effect of the magnetic field and the effective band gap of the system can be modified by changing Al concentration at the well center, the strength of the magnetic field and well dimensions. This case directly influences the nature of electronic and optical properties in this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号