共查询到20条相似文献,搜索用时 15 毫秒
1.
Our recent studies of the steady-state kinetics of the N2O-CO reaction on Rh(1 1 0) indicate that at CO excess, the reaction rate increases with increasing temperature. At N2O excess, the reaction rate is nearly independent of temperature at T < 520 K and rapidly decreases with increasing temperature at T > 520 K. Our present analysis of the relevant data indicates that the latter feature seems to be related to surface-oxide formation. Following this line, we propose a mean-field kinetic model making it possible to describe and clarify the experiment. 相似文献
2.
Our measurements indicate that under temperature-programmed conditions the N2O decomposition occurs on Rh(1 0 0) between 60 and 140 K and results in the appearance of two N2 desorption peaks related to N2 molecules leaving the surface during and after N2O dissociation events, respectively. Both peaks are observed even at low initial coverages. This and other features of N2 desorption are explained by using Monte Carlo simulations taking into account attractive N2O-O lateral interactions stabilizing N2O adsorption. The results presented are compared with those obtained earlier for Rh(1 1 0). 相似文献
3.
Density functional theory has been employed to investigate the adsorption and the dissociation of an N2O at different sites on perfect and defective Cu2O(1 1 1) surfaces. The calculations are performed on periodic systems using slab model. The Lewis acid site, CuCUS, and Lewis base site, OSUF are considered for adsorption. Adsorption energies and the energies of the dissociation reaction N2O → N2 + O(s) at different sites are calculated. The calculations show that adsorption of N2O is more favorable on CuCUS adsorption site energetically. CuCUS site exhibits a very high activity. The CuCUS-N2O reaction is exothermic with a reaction energy of 77.45 kJ mol−1 and an activation energy of 88.82 kJ mol−1, whereas the OSUF-N2O reaction is endothermic with a reaction energy of 205.21 kJ mol−1 and an activation energy of 256.19 kJ mol−1. The calculations for defective surface indicate that O vacancy cannot obviously improve the catalytic activity of Cu2O. 相似文献
4.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves. 相似文献
5.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not. 相似文献
6.
Riguang ZhangHongyan Liu Huayan ZhengLixia Ling Zhong LiBaojun Wang 《Applied Surface Science》2011,257(11):4787-4794
The adsorption and dissociation of O2 on the perfect and oxygen-deficient Cu2O(1 1 1) surface have been systematically studied using periodic density functional calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on the Cu2O(1 1 1) surface are identified: atomic O is found to prefer threefold 3Cu site on the perfect surface and Ovacancy site on the deficient surface, respectively. CuCUS is the most advantageous site with molecularly adsorbed O2 lying flatly over singly coordinate CuCUS-CuCSA bridge on the perfect surface. O2 adsorbed dissociatively on the deficient surface, which is the main dissociation pathway of O2, and a small quantity of molecularly adsorbed O2 has been obtained. Further, possible dissociation pathways of molecularly adsorbed O2 on the Cu2O(1 1 1) surface are explored, the reaction energies and relevant barriers show that a small quantity of molecularly adsorbed O2 dissociation into two O atoms on the deficient surface is favorable both thermodynamically and kinetically in comparison with the dissociation of O2 on the perfect surface. The calculated results suggest that the presence of oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of O2 and can obviously improve the catalytic activity of Cu2O, which is in agreement with the experimental observation. 相似文献
7.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles. 相似文献
8.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely. 相似文献
9.
M. Abu Haija Y. Romanyshyn H. Kuhlenbeck T.K. Todorova J. Döbler H.-J. Freund 《Surface science》2006,600(7):1497-1503
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface. 相似文献
10.
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV. 相似文献
11.
Recent high-pressure scanning tunneling microscopy studies, performed at room temperature, have explicitly demonstrated the specifics of the CO-mediated removal of Ni atoms from the topmost layer of an Au/Ni(1 1 1) surface alloy. After an incubation period, the reaction is found to start at step edges. On each edge, a large fraction of Ni atoms is removed from the terrace in certain areas, whereas other areas are nearly intact after a given time. With increasing time, the former areas begin to overlap and the reaction front becomes somewhat more homogeneous. The Au atoms remaining behind the front form nm-sized islands. Here, we present Monte Carlo simulations reproducing all these observations. 相似文献
12.
To investigate solvent effects, CO and H2 adsorption on Cu2O (1 1 1) surface in vacuum, liquid paraffin, methanol and water are studied by using density functional theory (DFT) combined with the conductor-like solvent model (COSMO). When H2 and CO adsorb on Cucus of Cu2O (1 1 1) surface, solvent effects can improve CO and H2 activation. The H-H bond increases with dielectric constant increasing as H2 adsorption on Osuf of Cu2O (1 1 1) surface, and the H-H bond breaks in methanol and water. It is also found that both the structural parameters and Mulliken charges are very sensitive to the COSMO solvent model. In summary, the solvent effects have obvious influence on the clean surface of Cu2O (1 1 1) and the adsorptive behavior. 相似文献
13.
A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (3 3 1) nanofacets on Au and Pt(1 1 0) surfaces. The results show that under experimental atomic fluxes, the (3 3 1) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(0 0 1) surface in the kinetic 6-vertex model. 相似文献
14.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K. 相似文献
15.
Min LiJun-ying Zhang Yue ZhangGuo-feng Zhang Tian-min Wang 《Applied Surface Science》2011,257(24):10710-10714
First-principles calculation on the basis of the density functional theory (DFT) and generalized gradient approximation have been applied to study the adsorption of H2 on the stoichiometric O-terminated Cu2O (1 1 1), Cu2O (1 1 1)-CuCUS and Cu-terminated Cu2O (1 1 1) surfaces. The optimal adsorption position and orientation of H2 on the stoichiometric O-terminated Cu2O (1 1 1) surface and Cu-terminated Cu2O (1 1 1) surface were determined and electronic structural changes upon adsorption were investigated by calculating the Local Density of States (LDOS) of the CuCUS 3d and CuCUS 4s of stoichiometric O-terminated Cu2O (1 1 1) surface. These results showed that H2 molecule adsorption on CuCUS site parallel to stoichiometric O-terminated Cu2O (1 1 1) surface and H2 molecule adsorption on Cu2 site parallel to Cu-terminated Cu2O (1 1 1) surface were the most favored, respectively. The presence of surface copper vacancy has a little influence on the structures when H2 molecule adsorbs on CuCSA, OCUS and OCSA atoms and the H2 molecule is only very weakly bound to the Cu2O (1 1 1)-CuCUS surface. From the analysis of stoichiometric O-terminated Cu2O (1 1 1) Local Density of States, it is observed that CuCUS 3d orbital has moved to a lower energy and the sharp band of CuCUS 4s is delocalized when compared to that before H2 molecule adsorption, and overlapped substantially with bands due to adsorbed H2 molecule. The Mulliken charges of H2 adsorption on CuCUS site showed that H2 molecule obtained electron from CuCUS which was consistent with the calculated electronic structural changes upon H2 adsorption. 相似文献
16.
K. Bobrov 《Surface science》2007,601(15):3268-3275
We present results of an STM investigation of water interaction with an oxygen covered Ag(1 1 0) in the case of the O(4 × 1) reconstructed surface. Regarding the formation of one-layer-thick silver nanostructures previously demonstrated, they point to the key role of the surface temperature at which the water dosing is made. Indeed we measure silver nanostructuring for dosing temperatures lower than 235 K. We follow, in real time during the water dosing, the modifications induced at the surface for two temperatures of 200 K and 240 K. Drastic differences are exhibited. At 200 K, after an initial stage of formation of molecular assembly strips along the [0 0 1], the reactive process leading to the conversion to an OH layer occurs clearly going along with the appearance and development of quasi-rectangular silver nanostructures. At 240 K, no such initial phase is evidenced. The complete conversion to an OH row structure of the scanned area occurs with no concomitant silver nanostructure formation. The dynamical behaviour of the reaction front allows the unravelling of the key role of the developing OH row ends intersecting the remaining Ag-O rows as particular reactive adsorption sites for the completion of the OH layer. 相似文献
17.
Adsorption probability measurements (molecular beam scattering) have been conducted to examine the adsorption dynamics (i.e. the gas-surface energy transfer processes) of CO2 adsorption on the Zn-on-Cu(1 1 0) bimetallic system. The results indicate surface alloy formation, which is in agreement with prior studies. Depositing Zn at 300 K on Cu(1 1 0), above the condensation temperature of CO2, leads to a “blocking” of CO2 adsorption sites by Zn which is incorporated in the Cu(1 1 0) surface. This apparent site blocking effect indicates a lowering of the CO2 binding energy on the alloyed surface as compared with the clean Cu(1 1 0) support. The Zn coverage has been calibrated by Auger electron spectroscopy and thermal desorption spectroscopy. 相似文献
18.
The surface chemistry and binding of dl-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO2(1 1 0) single crystal surfaces. TiO2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that dl-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO2 surface. On TiO2(1 1 0) surfaces reduced by Ar+ sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic. 相似文献
19.
We present results of an STM investigation of water interaction with an oxygen covered Ag(1 1 0) on the example of the O(4 × 1) reconstructed surface. In agreement with numerous previous experimental works, using diffraction techniques, we found that a structure of OH(1 × 2) type, displaying rows in the [1 −1 0] direction, is formed. The new features revealed by this local probe study, is the presence of quasi rectangular islands evenly distributed across the terraces, with a density of 0.22 ± 0.03 and a mean area of 90 ± 15 nm2 at 220 K. They are imaged at an apparent height of 0.14 nm. It is remarkable that the same OH row structure is present on the whole terrace “on top” and “in between” the islands. These features are attributed to silver islands of mono-atomic height, formed by clustering of silver ad-atoms released during reaction of the O atoms with the water molecules. These findings point to a more complex behaviour of the reaction dynamics than previously described. They emphasise the key role of the silver ad-atoms, present in the added rows of the initial Ag(1 1 0)-O(4 × 1) surface, in the formation of the nanostructures. In turn it is concluded that the rows evidenced by this STM and previous diffraction studies, are formed by OH chains. 相似文献
20.
Interactions of atomic and molecular hydrogen with perfect and deficient Cu2O(1 1 1) surfaces have been investigated by density functional theory. Different kinds of possible modes of H and H2 adsorbed on the Cu2O(1 1 1) surface and possible dissociation pathways were examined. The calculated results indicate that OSUF, CuCUS and Ovacancy sites are the adsorption active centers for H adsorbed on the Cu2O(1 1 1) surface, and for H2 adsorption over perfect surface, CuCUS site is the most advantageous position with the side-on type of H2. For H2 adsorption over deficient surface, two adsorption models of H2, H2 adsorbing perpendicularly over Ovacancy site and H2 lying flatly over singly-coordinate Cu-Cu short bridge, are typical of non-energy-barrier dissociative adsorption leading to one atomic H completely inserted into the crystal lattice and the other bounded to CuCUS atom, suggesting that the dissociative adsorption of H2 is the main dissociation pathway of H2 on the Cu2O(1 1 1) surface. Our calculation result is consistent with that of the experimental observation. Therefore, Cu2O(1 1 1) surface with oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of H2. 相似文献