首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
During evaporation, shape changes of nanoliter-scale (80-100 nL) water droplets were evaluated on two superhydrophobic surfaces with different random roughness (nm-coating, μm-coating). The square of the contact radius and the square of the droplet height decreased linearly with evaporation time. However, trend changes were observed at around 170 s (nm-coating) and around 150 s (μm-coating) suggesting a wetting mode transition. The calculated droplet radii for the wetting mode transition from the average roughness distance and the average roughness height of these surface structures were approximately equal to the experimental values at these trend changes. A certain level of correlation between the roughness size and droplet radius at the wetting mode transition was confirmed on surfaces with random roughness.  相似文献   

2.
Nanocrystalline dense sub-micron thin films of Ce0.8Gd0.2O2 − δ have been successfully deposited by flame spray deposition. The deposition mechanism has been identified as droplet deposition. The deposition temperature of the substrate was as low as 200 °C and the deposition rate ∼ 30 nm/min. Under these conditions the droplets have a very limited residence time in the hot zone of the flame and are deposited as liquid, forming smooth films free of particles. They exhibited a dense and crack-free microstructure. Grain growth, lattice constant, crystallographic density and surface roughness have been investigated as a function of annealing temperature. The good quality of the films, in association with the high deposition rates at low deposition temperatures shows the preeminence of the flame spray method for depositing thin films for micro-solid oxide fuel cells.  相似文献   

3.
Crystal morphology variation in inkjet-printed organic materials   总被引:1,自引:0,他引:1  
The recent commercialization of piezoelectric-based drop-on-demand inkjet printers provides an additive processing platform for producing and micropatterning organic crystal structures. We report an inkjet printing approach where macro- and nano-scale energetic composites composed of cyclotrimethylenetrinitramine (RDX) crystals dispersed in a cellulose acetate butyrate (CAB) matrix are produced by direct phase transformation from organic solvent-based all-liquid inks. The characterization of printed composites illustrates distinct morphological changes dependent on ink deposition parameters. When 10 pL ink droplets rapidly formed a liquid pool, a coffee ring structure containing dendritic RDX crystals was produced. By increasing the substrate temperature, and consequently the evaporation rate of the pooled ink, the coffee ring structure was mitigated and shorter dendrites from up to ∼1 to 0.2 mm with closer arm spacing from ∼15 to 1 μm were produced. When the nucleation and growth of RDX and CAB were confined within the evaporating droplets, a granular structure containing nanoscale RDX crystals was produced. The results suggest that evaporation rate and microfluidic droplet confinement can effectively be used to tailor the morphology of inkjet-printed energetic composites.  相似文献   

4.
A novel ZnS hierarchical structure composed of nanorod arrays with branched nanosheets and nanowires grown on their upside walls, was synthesized over Au-coated silicon substrate via chemical vapor deposition technique. Contact angle and sliding angle of this hierarchical film with no surface modification were measured to be about 153.8° and 9.1° for 5 μl water droplets. Self-cleaning behavior and dynamic water-repelling performance were clearly demonstrated. In addition, electrowetting transition phenomenon from superhydrophobic to hydrophilic state happened when a critical bias ∼7.0 V was applied. Below this threshold voltage, the contact angle change is little. This work for the first time reports the creation of ZnS superhydrophobic surface and could enrich its research field as surface functional materials.  相似文献   

5.
A superhydrophobic surface originated from quincunx-shape composite particles was obtained by utilizing the encapsulation and graft of silica particles to control the surface chemistry and morphology of the hybrid film. The composite particles make the surface of film form a composite interface with irregular binary structure to trap air between the substrate surface and the liquid droplets which plays an essential role in obtaining high water contact angle and low water contact angle hysteresis. The water contact angle on the hybrid film is determined to be 154 ± 2° and the contact angle hysteresis is less than 5°. This is expected to be a simple and practical method for preparing self-cleaning hydrophobic surfaces on large area.  相似文献   

6.
Zinc oxide films of 40 nm thickness have been deposited on glass substrates by pulsed laser deposition using an excimer XeCl laser (308 nm) at different substrate temperatures ranging from room temperature to 650 °C. Surface investigations carried out by using atomic force microscopy have shown a strong influence of temperature on the films surface topography. UV-VIS transmittance measurements have shown that our ZnO films are highly transparent in the visible wavelength region, having an average transmittance of ∼90%. The optical band gap of the films was found to be 3.26 eV, which is lower than the theoretical value of 3.37 eV. Besides the normal absorption edge related to the transition between the valence and the conduction band, an additional absorption band was also recorded in the wavelength region around 364 nm (∼3.4 eV). This additional absorption band may be due to excitonic, impurity, and/or quantum size effects. Photoreduction/oxidation in ozone of the ZnO films lead to larger conductivity changes for higher deposition temperature. In conclusion, the ozone sensing characteristics as well as the optical properties of the ZnO thin films deposited by pulsed laser deposition are strongly influenced by the substrate temperature during growth. The sensitivity of the films towards ozone might be enhanced significantly by the control of the films deposition parameters and surface characteristics.  相似文献   

7.
We present results from an experimental study on the roughening of Al thin film during electrochemical oxidation reduction. The surface reaction occurred in two stages. Anodic alumina forms during oxidation of aluminum followed by immediate dissolution of alumina. The surface image using AFM showed randomly oriented grains with lateral feature size ∼280 nm at early stage (30 s) of oxidation-dissolution (OD). As farther dissolution of alumina (90 s) progressed, oriented rectangular grains were observed with lateral feature size ∼400 nm, indicating a disordered to ordered transition at the surface. The roughness exponent at the earlier stage found to be 0.44 ± 0.02, consistent with nonlinear KPZ equation. However, for the later case, roughness exponent increased to 0.84 ± 0.03, which is close to the value derived in continuum model. The value of dissolution exponent (growth exponent) β found to be 0.47 ± 0.1. These values are slightly different from the theoretical values but they are consistent with the theoretical models within the experimental error. Shadow instability found to be a dominant feature in this experiment and contributed to the discrepancy. Interface instabilities are discussed in terms of local and non-local effects.  相似文献   

8.
The deposition monolayers of L10 FePt nanoparticles via an electrospraying method and the magnetic properties of the deposited film were studied. FePt nanoparticles in a size of around 2.5 nm in diameter, prepared by a liquid process, were used as a precursor. The size of the deposited particles can be controlled up to 35 nm by controlling the sprayed droplet size that is formed by adjusting the precursor concentration and the precursor flow rate. The droplets were heated in a tubular furnace at a temperature of up to 900 °C to remove all organic compounds and to transform the FePt particles from disordered face centered cubic to an ordered FCT phase. Finally, the particles were deposited in the form of a monolayer film on a silicon substrate by electrostatic force and characterized by scanning electron microscopy. The monolayer of particles was obtained by the high charge on particles obtained during the electrospraying process. The magnetic properties of the monolayer were investigated by magneto-optic Kerr effect measurements. Coercivity up to 650 Oe for a film consisting of 35 nm L10 FePt nanoparticles was observed after heat treatment at a temperature of 800 °C.  相似文献   

9.
F. Allegretti  M. Polcik 《Surface science》2007,601(17):3611-3622
The local adsorption structures of the surface species formed by interaction of thymine with a Cu(1 1 0) surface at room temperature, and after heating to ∼530 K, have been investigated. Initial characterisation by soft-X-ray photoelectron spectroscopy and O K-edge near-edge X-ray absorption fine structure (NEXAFS) indicates the effect of sequential dehydrogenation of the NH species and provides information on the molecular orientation. O 1s and N 1s scanned-energy mode photoelectron diffraction shows the species at both temperatures bond to the surface through both carbonyl O atoms and the deprotonated N atom between them, each bonding atom adopting near-atop sites on the outermost Cu surface layer. The associated bondlengths are 1.96 ± 0.03 Å for Cu-N and 1.91 ± 0.03 Å and 2.03 ± 0.03 Å for the two inequivalent Cu--O bonds. The molecular plane lies almost exactly in the close-packed azimuth, but with a tilt relative to the surface normal of approximately 20°. Heating to ∼530 K, or deposition at this temperature, appears to lead to dehydrogenation of the second N atom in the ring, but no significant change in the adsorption geometry.  相似文献   

10.
Photoluminescence (PL) of high quality GaN epitaxial layer grown on β-Si3N4/Si (1 1 1) substrate using nitridation-annealing-nitridation method by plasma-assisted molecular beam epitaxy (PA-MBE) was investigated in the range of 5-300 K. Crystallinity of GaN epilayers was evaluated by high resolution X-ray diffraction (HRXRD) and surface morphology by Atomic Force Microscopy (AFM) and high resolution scanning electron microscopy (HRSEM). The temperature-dependent photoluminescence spectra showed an anomalous behaviour with an ‘S-like’ shape of free exciton (FX) emission peaks. Distant shallow donor-acceptor pair (DAP) line peak at approximately 3.285 eV was also observed at 5 K, followed by LO replica sidebands separated by 91 meV. The activation energy of the free exciton for GaN epilayers was also evaluated to be ∼27.8±0.7 meV from the temperature-dependent PL studies. Low carrier concentrations were observed ∼4.5±2×1017 cm−3 by measurements and it indicates the silicon nitride layer, which not only acts as a growth buffer layer, but also effectively prevents Si diffusion from the substrate to GaN epilayers. The absence of yellow band emission at around 2.2 eV signifies the high quality of film. The tensile stress in GaN film calculated by the thermal stress model agrees very well with that derived from Raman spectroscopy.  相似文献   

11.
To obtain metallic nanofingers applicable in surface acoustic wave (SAW) sensors, a mechano-chemical atomic force microscope (AFM) nanolithography on a metallic thin film (50 nm in thickness)/piezoelectric substrate covered by a spin-coated polymeric mask layer (50-60 nm in thickness) was implemented. The effective shape of cross-section of the before and after etching grooves have been determined by using the AFM tip deconvolution surface analysis, structure factor, and power spectral density analyses. The wet-etching process improved the shape and aspect ratio (height/width) of the grooves and also smoothed the surface within them. We have shown that the relaxed surface tension of the polymeric mask layer resulted in a down limitation in width and length of the lithographed nanofingers. The surface tension of the mask layer can be changed by altering the initial concentration of the polymer in the deposition process. As the surface tension reduced, the down limitation decreased. In fact, an extrapolation of the analyzed statistical data has indicated that by decreasing the surface tension from 39 to 10 nN/nm, the minimum obtainable width and length of the metallic nanofingers was changed from about 55 nm and 2 μm to 15 nm and 0.44 μm, respectively. Using the extrapolation’s results, we have shown that the future SAW sensors buildable by this nanolithography method possess a practical bound in their synchronous frequency (∼58 GHz), mass sensitivity (∼6125 MHz-mm2/ng), and the limit of mass resolution (∼4.88 × 10−10 ng/mm2).  相似文献   

12.
The pulsed laser processing in liquid media is an attractive alternative to produce room temperature luminescent silicon nanocrystals (Si-ncs). We report on a blue luminescent Si-ncs preparation by using nanosecond pulsed laser (Nd:YAG, KrF excimer) processing in transparent polymer and water. The Si-ncs fabrication is assured by ablation of crystalline silicon target immersed in liquids. During the processing and following aging in liquids, oxide based liquid media, induce shell formation around fresh nanocrystals that provides a natural and stable form of surface passivation. The stable room temperature blue-photoluminescent Si-ncs are prepared with maxima located around ∼440 nm with corresponding optical band gap around ∼2.8 eV (∼430 nm). Due to the reduction of surface defects, the Si-ncs preparation in water, leads to a narrowing of full-width-half-maxima of the photoluminescence spectra.  相似文献   

13.
Three n-type single crystal hydrothermally grown ZnO samples with resistivities of 5.1±0.6, 15±2 and 220±20 Ω cm, respectively, have been electrically characterized using thermal admittance spectroscopy (TAS). The presence of three main donors: two shallow ones D1 and D2 and a deeper one D3 with activation energies of ∼30, ∼50 and ∼290 meV, respectively, are detected. In addition, the TAS spectra reveal the presence of a fourth level, DX, with a peak amplitude in the conductance spectra that decreases with the temperature occurrence. It is shown that this anomalous behavior is consistent with DX being a negative-U defect of donor-type. An activation energy of ∼80 meV for the ++/+ transition, a capture cross section equal to ∼3×10−17 cm2 and an energy barrier for atomic reconfiguration of ∼0.25 eV, respectively, deduced according to the assignment of DX to a negative-U defect. A tentative assignment of the DX defect with oxygen vacancies is discussed.  相似文献   

14.
We present an experimental investigation of the impact of magneto-rheological droplets on a smooth surface. The experimental setup consists of a syringe pump with capillary tube of 1.6 mm diameter located perpendicularly above a dry smooth quartz surface assembled above an electromagnetic module, which enables magnetic flux density control up to 7.8 G. Free surface flow patterns generated during the impact of droplets of 2.2 mm diameter, Reynolds number in the range 15-125 were recorded using a digital high-speed camera. The materials used in this study were commercial ferro-fluids, (hydrocarbon-based fluid containing micron-sized magnetizable particles). These fluids were characterized using a rotational rheometer modified by an electromagnetic module. The results show an up to 40% reduction in maximum spread diameters as well as reductions in spread velocities for droplets subjected to a magnetic field.  相似文献   

15.
The water/graphitic-carbon interaction energy was obtained for a sample having a water surface site adsorption density of 13.3 μmol m−2. The interaction energy was determined from the spreading pressure of water, its surface tension and the water contact angle and using a formula obtained by the combination of the Young equation with a general equation of pair interaction. The values obtained for contact angles 42° and 86° are 7.63 and 7.18 kJ mol−1 of water are similar to the water binding energies obtained from molecular dynamic simulations of water droplets on a graphite surface: 6.7-8.33 kJ mol−1.  相似文献   

16.
液滴碰撞Janus颗粒球表面的行为特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究液滴碰撞Janus颗粒(双亲性)球表面的独特行为特征,以粒径为5.0 mm铜球为材料制备了Janus颗粒,用直径为2.0 mm的液滴,在韦伯数(We)为2.7,10,20,30的测试情况下对Janus颗粒球表面进行了碰撞实验.结果表明:液滴碰撞Janus颗粒球表面后的运动可分为铺展、回缩、振荡和回弹4个过程.在不...  相似文献   

17.
Two off-critical blends of poly(2-vinylpyridine) and polystyrene, 2:3 and 3:2 (w:w) PVP:PS, were spin-cast (with varied domain scale R) onto periodically (λ = 4 μm) patterned substrate. The pattern consisted of two alternating symmetric stripes: Au attracting PVP and neutral self-assembled monolayer. The resulting droplet-type morphologies were recorded with Scanning Force Microscopy and examined with integral geometry approach. PVP-rich islands of the 2:3 PVP:PS films form, for a wide R/λ range, strongly anisotropic morphologies. They show up, for R/λ ∼ 0.5, a weak λ/2-substructure of smaller PVP droplets in addition to the domains periodic with λ. The 3:2 blend exhibits morphologies with dominant λ-structure of PVP ribbons, which encircle PS droplets. For R/λ ∼ 0.5, smaller PS domains are also present but no λ/2-substructure is formed. The |χE|-values of droplet surface density are reduced, as compared to homogeneous substrate, for the 3:2 blend (with |χE| → 0 for R ∼ λ). This effect is absent for the 2:3 mixture.  相似文献   

18.
An attempt was made to study the effect of plasma surface activation on the adhesion of UV-curable sol-gel coatings on polycarbonate (PC) and polymethylmethacrylate (PMMA) substrates. The sol was synthesized by the hydrolysis and condensation of a UV-curable silane in combination with Zr-n-propoxide. Coatings deposited by dip coating were cured using UV-radiation followed by thermal curing between 80 °C and 130 °C. The effect of plasma surface treatment on the wettability of the polymer surface prior to coating deposition was followed up by measuring the water contact angle. The water contact angle on the surface of as-cleaned substrates was 80° ± 2° and that after plasma treatment was 43° ± 1° and 50° ± 2° for PC and PMMA respectively. Adhesion as well as mechanical properties like scratch resistance and taber abrasion resistance were evaluated for coatings deposited over plasma treated and untreated surfaces.  相似文献   

19.
The local structure in melt-spun Fe85Ga15 ribbons with a width ∼3 mm and thickness ∼60 μm produced in argon atmosphere was studied by analyzing EXAFS and XANES data. The following results were obtained: Ga–Ga bonds were not detected excluding the tendency to form clusters of Ga atoms; Ga substitutes Fe creating a local strain of about +1% on the first shell Fe–Ga bond, whereas on the second Fe–Ga shell strain quickly relaxes down to +0.3%; XANES spectra are compatible with a random substitution of Fe atoms by Ga atoms in the A2 structure. From the AFM investigation, we observed that at the surface (free side) of the ribbon the particles are elongated along the ribbon (∼2 μm×∼5 μm) and each particle is formed by small grains of average size of 200 nm.  相似文献   

20.
B.R. Conrad 《Surface science》2009,603(3):L27-13358
Ultra-thin oxide (UTO) films were grown on Si(1 1 1) in ultrahigh vacuum at room temperature and characterized by scanning tunneling microscopy. The ultra-thin oxide films were then used as substrates for room temperature growth of pentacene. The apparent height of the first layer is 1.57 ± 0.05 nm, indicating “standing up” pentacene grains in the thin film phase were formed. Pentacene is molecularly resolved in the second and subsequent molecular layers. The measured in-plane unit cell for the pentacene (0 0 1) plane (ab plane) is a = 0.76 ± 0.01 nm, b = 0.59 ± 0.01 nm, and γ = 87.5 ± 0.4°. The films are unperturbed by the UTO’s short-range spatial variation in tunneling probability, and reduce its corresponding effective roughness and correlation exponent with increasing thickness. The pentacene surface morphology follows that of the UTO substrate, preserving step structure, the long range surface rms roughness of ∼0.1 nm, and the structural correlation exponent of ∼1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号