首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel chemiluminescence gas-diffusion flow injection system for the determination of arsenic(III) in aqueous samples is described. The analytical procedure involves injection of arsenic(III) samples and standards into a 0.3 mol L−1 hydrochloric acid carrier stream which is merged with a reagent stream containing 0.2% (w/v) sodium borohydride and 0.015 mol L−1 sodium hydroxide. Arsine, generated in the combined carrier/reagent donor stream, diffuses across the hydrophobic Teflon membrane of the gas-diffusion cell into an argon acceptor stream and then reacts with ozone in the flow-through chemiluminescence measuring cell of the flow system. Under optimal conditions, the method is characterized by a wide linear calibration range from 0.6 μg L−1 to 25 mg L−1, a detection limit of 0.6 μg L−1 and a sample throughput of 300 samples per hour at 25 mg L−1 and 450 samples per hour at 25 μg L−1.  相似文献   

2.
流动注射化学发光法测定褪黑素   总被引:1,自引:0,他引:1  
在强碱性介质中,铁氰化钾可直接氧化褪黑素产生化学发光。基于此,建立了一种测定褪黑素的流动注射化学发光分析方法。线性范围为1.9×10-6~2.3×10-4g/mL,检出限为5×10-7g/mL,该法已用于药物中褪黑素的测定。  相似文献   

3.
A simple and convenient flow injection-chemiluminescence (FI-CL) method for the determination of cysteine is reported, based on a fast and strong CL in a basic luminol-cysteine-NaIO4 solution. The linear range was 1.0×10−8 to 1.0×10−6 M with a detection limit (3s) of 5×10−9 M, which was 100 times more sensitive than previously reported CL methods. Singlet oxygen, hydroxyl radical and hydrogen peroxide were suggested to be produced in this reaction and were responsible for the CL of cysteine. This simple method has been successfully applied for the determination of cysteine in a pharmaceutical formulation.  相似文献   

4.
The consumption of ethanol is known to increase the likelihood of oral cancer. In addition, there has been a growing concern about possible association between long term use of ethanol-containing mouthwashes and oral cancer. Acetaldehyde, known to be a carcinogen, is the first metabolite of ethanol and it can be produced in the oral cavity after consumption or exposure to ethanol. This paper reports on the development of a gas-diffusion flow injection method for the online determination of salivary acetaldehyde by its colour reaction with 3-methyl-2-benzothiazolinone hydrazone (MBTH) and ferric chloride. Acetaldehyde samples and standards (80 μL) were injected into the donor stream containing NaCl from which acetaldehyde diffused through the hydrophobic Teflon membrane of the gas-diffusion cell into the acceptor stream containing the two reagents mentioned above. The resultant intense green coloured dye was monitored spectrophotometrically at 600 nm. Under the optimum working conditions the method is characterized by a sampling rate of 9 h−1, a linear calibration range of 0.5–15 mg L−1 (absorbance = 5.40 × 10−2 [acetaldehyde, mg L−1], R2 = 0.998), a relative standard deviation (RSD) of 1.90% (n = 10, acetaldehyde concentration of 2.5 mg L−1), and a limit of detection (LOD) of 12.3 μg L−1. The LOD and sampling rate of the proposed method are superior to those of the conventional gas chromatographic (GC) method (LOD = 93.0 μg L−1 and sampling rate = 4 h−1). The reliability of the proposed method was illustrated by the fact that spiked with acetaldehyde saliva samples yielded excellent recoveries (96.6–101.9%), comparable to those obtained by GC (96.4–102.3%) and there was no statistically significant difference at the 95% confidence level between the two methods when non-spiked saliva samples were analysed.  相似文献   

5.
流动注射化学发光法测定甲氧氯普胺   总被引:4,自引:0,他引:4  
在酸性条件下,甲醛对高锰酸钾氧化甲氧氯普胺的化学发光反应有很强的增敏作用,据此,建立了流动注射化学发光法测定甲氧氯普胺纳新方法。方法的线性范围为0.4-100μg/mL,检出限为0.2μg/mL,对10μg/mL的甲氧氯普胺标准溶液连续11次测定的相对标准偏差为1.8%。方法已用于药物中甲氧氯普胺含量的测定。  相似文献   

6.
在酸性条件下,KMnO4与甲醛能够产生微弱的化学发光,而富马酸依美斯汀的存在能够大大增强该化学发光强度;结合流动注射技术,建立了测定富马酸依美斯汀的流动注射-化学发光新方法。该方法的线性范围分别为3.0×10-8~2.0×10-7g/mL,2.0×10-7~1.0×10-6g/mL和1.0×10-6~8.0×10-6g/mL。检出限为1.0×10-8g/mL,对2.0×10-6g/mL富马酸依美斯汀滴眼液平行测定11次,其相对标准偏差为1.3%。该方法已成功应用于滴眼液中富马酸依美斯汀的含量测定。  相似文献   

7.
流动注射化学发光法测定DL-酪氨酸   总被引:6,自引:1,他引:6  
在甲醛存在下 ,高锰酸钾与DL 酪氨酸能够发生化学发光反应 ,产生很强的化学发光。据此采用流动注射技术 ,建立了一种测定DL 酪氨酸的化学发光分析法。方法的检出限为 2 .9× 1 0 - 8g/mL ,相对标准偏差为 1 .5 % ( 1 .0× 1 0 - 6g/mLDL 酪氨酸 ,n =1 1 ) ,线性范围为 1 .0× 1 0 - 7g/mL~ 5 .0× 1 0 - 6g/mL。  相似文献   

8.
基于在碱性条件下,蒽醌对ClO- Luminol化学发光体系的显著抑制作用,结合反向流动注射技术,提出了蒽醌的流动注射 化学发光分析新方法。蒽醌的质量浓度在0.5~100μg mL范围内与化学发光的抑制强度呈良好的线性关系。检出限为0.05μg mL,RSD=1.6%,采样频率为150次 h,回收率为105%~107.5%。  相似文献   

9.
流动注射化学发光法测定甲硝唑   总被引:6,自引:0,他引:6  
在碱性条件下 ,铁氰化钾氧化鲁米诺产生化学发光 ,甲硝唑对该体系有显著的增强作用 (亚铁氰化钾存在时 )。基于此 ,建立了流动注射化学发光测定痕量甲硝唑的新方法。甲硝唑浓度在 2 .0× 1 0 -6~ 4 .0× 1 0 -4 mol L范围内与发光强度呈良好的线性关系 ;检出限 (3σ)为 1 .5× 1 0 -7mol L。相对标准偏差 (c =1 .0× 1 0 -5mol L ,n=1 1 )为 3.6 %。方法已用于制剂中甲硝唑含量测定  相似文献   

10.
流动注射化学发光法测定青霉素G钾   总被引:1,自引:0,他引:1  
在甲醛的存在下,酸性KMnO4与青霉素G钾能够产生很强的化学发光,从而建立了KMnO4-甲醛-青霉素G钾化学发光体系来测定青霉素G钾.青霉素G钾的测定线性范围为2.0×10-7~1.0×10-5 g/mL,方法的检出限为1.4×10-7 g/mL,对4.0×10-7 g/mL的青霉素G钾进行11次平行测定,相对标准偏差为1.0%,用此法测定青霉素G钾取得了较好的结果.  相似文献   

11.
A simple flow injection chemiluminescence (CL) analysis method for the determination of europium in mineral samples is reported. It is based on luminescence produced by NaIO4-H2O2 CL system sensitized by [Eu(EDTA)]. The relative chemiluminescence intensity of the Eu3+-EDTA-NaIO4-H2O2 system is proportional to the amount of Eu3+. The optimized experimental conditions were investigated. The linear range and detection limit for Eu3+ are 2.0×10−7 to 1.0×10−5 and 6.2×10−8 M, respectively. The sample throughput of the method is 80 samples/h. This method was successfully applied to the determination of europium in rare earth oxides. And the mechanism of chemiluminescence is proposed.  相似文献   

12.
The determination of the amino acids proline, histidine, tyrosine, arginine, phenylalanine and tryptophan using flow injection analysis (FIA) with chemiluminescence detection is described. Proline was the only amino acid to exhibit chemiluminescence with the tris(2,2-bipyridyl)ruthenium(III) reaction at pH 10. While, histidine was found to selectively enhance the reaction of luminol with Mn(II) salts in a basic medium. Acidic potassium permanganate chemiluminescence was able to selectively determine tyrosine at pH 6.75. Low pressure separations using a C18 guard column allowed the simultaneous determination of tyrosine and tryptophan or phenylalanine and tryptophan with acidic potassium permanganate and copper(II)-amino acid-hydrogen peroxide chemiluminescence, respectively. Precision for each method was less than 3.9% (R.S.D.) for five replicates of a standard (1×10−5 M) and the detection limits ranged between 4×10−9 and 7×10−6 M. Preliminary investigations revealed that the methodology developed was able to selectively determine the individual amino acids in an equimolar mixture of the 20 naturally occurring amino acids.  相似文献   

13.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

14.
基于酸性溶液中HCHO存在下,KMnO4可氧化I-产生很强的化学发光的原理,建立了一个简单快速测定微量碘的顺序注射化学发光分析方法。I-在3.0×10-8~8.0×10-6mol/L范围内与发光强度呈良好线性关系。对2.0×10-6mol/L I-11次重复测定的相对标准偏差(RSD)为2.6%,方法的检出限(3σ)1.3×10-8mol/L,测定了4种食品中的碘量,回收率为92.8%~107.7%。分析频率为70 h。  相似文献   

15.
基于在碱性条件下,孔雀石绿可以增强铁氰化钾-钙黄绿素的化学发光,且其浓度在一定范围内与化学发光强度呈线性关系,结合流动注射技术,建立了化学发光法测定孔雀石绿的新方法。在优化的实验条件下,方法的线性范围为3.0×10-8~1.0×10-6 g/mL,检出限为2.5×10-9 g/mL,对浓度为1.0×10-7g/mL的孔雀石绿溶液进行11次平行测定,相对标准偏差为2.3%。方法可应用于环境水样的测定。  相似文献   

16.
流动注射化学发光法测定丹皮酚   总被引:4,自引:0,他引:4  
丹皮酚有解热、消炎、止痛、镇静等功效[1]。目前测定丹皮酚的方法有高效液相色谱法[2,3]、薄层色谱法[4]、毛细管气相色谱法[5]、毛细管电泳法[6,7]、紫外分光光度法[8]。流动注射是一种高度重现的进样技术[9],它同化学发光法联用,具有快速、灵敏和仪器简单等优点。用化学发光  相似文献   

17.
在NaOH-NaHCO3介质中,铁氰化钾氧化西咪替丁产生快速化学发光反应,0.5 s后发光达到最大,2 s后迅速衰减至零。本文结合流动注射技术,建立了一种化学发光测定西咪替丁的新方法。针对这一快速发光反应,设计了与之相应的管路系统和最短的反应管道来捕捉最大化学发光信号,发光强度与西咪替丁质量浓度在5×10-7~1×10-4g/mL范围内呈线性关系,检出限为1.1×10-7g/mL。对5×10-6g/mL西咪替丁进行11次平行测定,相对标准偏差为1.8%。本法已用于西咪替丁片剂的测定。  相似文献   

18.
The determination of ATP using the coupling between a photochemical reaction and a chemiluminescence reaction in a flow injection (FI) system is described. The method is based on the reaction of glucose with ATP catalyzed by hexokinase and Mg2+ ions. The glucose that is not consumed by ATP is subsequently photooxidized using 9,10-anthraquinone-2,6-disulfonate as a sensitizer. The hydrogen peroxide produced in the photochemical reaction is monitored through the chemiluminescence reaction with luminol catalyzed by hematine. There is a linear relationship between the decrease in the chemiluminescence response and the ATP concentration at a constant concentration of glucose. Under the optimum conditions, the calibration graph is linear in the range 0.20–50.5 mg L–1 with a throughput of 25 samples per hour and relative standard deviations between ±0.62 and ±1.42%. The limit of detection is 0.07 mg L–1. The method was used for the determination of ATP in pharmaceuticals, milk, and soils.  相似文献   

19.
This work reports a novel flow injection (FI) method for the determination of captopril, 1-[(2S)-3-mercapto-2-methylpropionyl]-l-proline (CPL), based on the enhancement CPL affords on the chemiluminescence (CL) reaction between luminol and hydrogen peroxide. For this purpose alkaline luminol and hydrogen peroxide solutions were mixed online, the sample containing CPL was injected into an aqueous carrier stream, mixed with the luminol-hydrogen peroxide stream and pumped into a glass flow cell positioned in front of a photomultiplier tube (PMT). The increase in the CL intensity was recorded in the form of FI peaks, the height of which was related to the CPL mass concentration in the sample. Different chemical and instrumental parameters affecting the CL response were investigated. Under the selected conditions, the log-log calibration curve was linear in the range 5-5000 μg l−1 of CPL, the limit of detection was 2 μg l−1 (at the 3σ level), the R.S.D., sr was 3.1% at the 100 μg l−1 level (n=8) and the sampling rate was 180 injections h−1. The method was applied to the determination of CPL in pharmaceutical formulations with recoveries in the range 100±3%.  相似文献   

20.
This paper describes the use of a pervaporation (PV) technique in a flow injection (FI) system for selective improvement in iodide analysis. Iodide in the sample zone is oxidized to iodine, which permeates through a hydrophobic membrane. Detection of the diffused iodine is achieved using the chemiluminescent (CL) emission at 425 nm that results from the reaction between iodine and luminol. The method was applied for the analysis of some pharmaceutical products, such as nuclear emergency tablets and multivitamin tablets. Ascorbic acid present in multivitamin samples interfered seriously with the analysis, and off-line sample treatment using anion exchange resin was employed to successfully remove ascorbic acid before the analysis. Ascorbic acid was flushed from the column using 0.4 M sodium nitrate followed by elution of iodide with 2 M sodium nitrate. The detection limit (3S.D.) of the system was 0.5 mg l−1, with reproducibility of 5.2% R.S.D. at 5 mg l−1. Sample throughput was determined as 30 injections h−1. There was good agreement between iodide concentrations from extracted samples determined using four different methods, i.e., PV-FI, gas diffusion-flow injection, potentiometry and ICP-MS. A comparison of the analytical features of the developed pervaporation system with these of the previously reported chemiluminescence gas diffusion-flow injection previously reported is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号