首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

2.
First principles study of structural, elastic, electronic and optical properties of the cubic perovskite-type BaHfO3 has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated equilibrium lattice is in a reasonable agreement with the available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. A linear pressure dependence of the elastic stiffnesses is found. Band structures show that BaHfO3 is a direct band gap between the occupied O 2p and unoccupied Hf d states. The variation of the gap versus pressure is well fitted to a quadratic function. Furthermore, in order to understand the optical properties of BaHfO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. We have found that O 2p states and Hf 5d states play a major role in the optical transitions as initial and final states, respectively. This is the first quantitative theoretical prediction of the elastic, electronic and optical properties of BaHfO3 compound, and it still awaits experimental confirmation.  相似文献   

3.
Electronic structure and optical properties of SrHfO3 are calculated using the full potential linearized augmented plane wave plus local orbitals method. The calculated equilibrium lattice is in reasonable agreement with the experimental data. From the density of states (DOS) as well as charge density studies, we find that the bonding between Sr and HfO3 is mainly ionic and that HfO3 entities bond covalently. The complex dielectric functions are calculated, which are in good agreement with the available experimental results. The effect of the spin-orbit coupling on the optical properties is also investigated and found to be quite small.  相似文献   

4.
The electronic structure and the optical properties of In6S7 crystal are calculated by the first-principles full-potential linearized augmented plane wave method (FP-LAPW) using density functional theory (DFT) in its generalized gradient approximation (GGA). The calculated band structure shows that the In6S7 is a semiconductor with a direct band gap in good agreement with experimental studies. Furthermore, the dielectric tensor and the optical properties, such as absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, are derived and analyzed in the study.  相似文献   

5.
The structural parameters, elastic, electronic, and optical properties of hexagonal BiAlO3 were investigated by the density functional theory. The calculated structural parameters are in good agreement with previous calculation and experimental data. The structural stability of BiAlO3 has been confirmed by calculation of the elastic constants. The energy band structure, density of states, and Mulliken charge populations were obtained. BiAlO3 presents an indirect band gap of 3.28 eV. Furthermore, the optical properties were calculated and analyzed. It is shown that BiAlO3 is a promising dielectric material.  相似文献   

6.
Electronic and optical properties of InP in zincblende crystal structure are studied using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) program. The complex dielectric function and optical constants, such as optical absorption coefficient, reflectivity, refractive index and extinction coefficient, are calculated, which are in good agreement with the experimental results, better than those from the full potential linear muffin-tin orbital (FP-LMTO) method. We also have explained the origin of the spectral peaks on the basis of the electronic band structures.  相似文献   

7.
A series of first principles calculations have been carried out to study structural, electronic properties of BaSxSe1−x alloys. We have used the local density as well as the generalized gradient approximations for the exchange-correlation potential. The structural properties of these materials, in particular the composition dependence to the lattice constant and bulk modulus, are found to be linear. It is also found linear relationship between theoretical band gaps and 1/a2 (where a is lattice constant).  相似文献   

8.
The electronic structure of Cd3TeO6 has been studied in the terms of first-principles calculations based on the density functional theory in order to investigate their optical properties and In-substitution effects. It was found that the highly dispersed bottom of the conduction band formed from Cd-s orbitals is the origin of the high transparency and conductivity. Cd3TeO6 exhibited optical anisotropy in its main crystal axes, and the c-axis showed the most suitable crystal growth direction for obtaining a wide transparent region. A pronounced shift of the absorption edge was effectively observed by the In-substitution, reflecting the domination of the In-5s level in the conduction band near the Fermi level.  相似文献   

9.
We report results of first-principles total-energy calculations for structural properties of the group I-VII silver iodide (AgI) semiconductor compound under pressure for B1 (rocksalt), B2 (cesium chloride), B3 (zinc-blende) and B4 (wurtzite) structures. Calculations have been performed using all-electron full-potential linearized augmented plane wave plus local orbitals FP-LAPW + lo method based on density-functional theory (DFT) and using generalised gradient approximation (GGA) for the purpose of exchange correlation energy functional. In agreement with experimental and earlier ab initio calculations, we find that the B3 phase is slightly lower in energy than the B4 phase, and it transforms to B1 structure at 4.19 GPa. Moreover, we found AgI has direct gap in B3 structure with a band gap of 1.378 eV and indirect band gap in B1 phase with a bandgap around 0.710 eV. We also present results of the effective masses for the electrons in the conduction band (CB) and the holes in the valence band (VB). To complete the fundamental characteristics of this compound we have analyzed their linear optical properties such as the dynamic dielectric function and energy loss function for a wide range of 0-25 eV.  相似文献   

10.
The full potential linearized augmented plane wave (FP-LAPW) method with the GGA+U approach was applied to study the electronic structures of the compound Eu6C60. Present calculations show that the hybridization between the Eu s, d state and the C60 π states plays an essential role in its FM exchange interactions between the 4f electrons and metallic properties.  相似文献   

11.
The electronic structure of the cubic perovskites SrTiO3, BaTiO3 and PbTiO3 is calculated by Hartree-Fock and density functional theory methods. Wannier-type atomic orbitals (WTAOs) are obtained from symmetrized combinations of Bloch states of some occupied and vacant bands by a variational method. Population analysis, based on the WTAOs, attributes a mixed ionic-covalent type of bonding with partly covalent Ti-O bonds to the perovskites under study. The atomic charges thus calculated are then compared to those obtained by the traditional Mulliken population analysis.  相似文献   

12.
The magnetic properties, electronic structure, and optical properties of the filled skutterudite BaFe4Sb12 are calculated by the first-principles full-potential linearized augmented plane wave (FPLAPW) plus local orbital method. It is found that the local spin density approximation (LSDA) method appears more accurate than the generalized gradient approximation (GGA) method in calculating the electronic structures and optical properties of this compound. Furthermore, our calculated lattice constant and spin magnetic moments with the LSDA method are in overall better agreement with experiment. In contrast with recent experiment, our calculations are in good agreement with experimental reflectivity spectra and optical conductivity spectrum.  相似文献   

13.
The electronic, structural properties and optical properties of the rutile TiO2 have been reported using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K code. We employed the generalized gradient approximation (GGA), which is based on exchange-correlation energy optimization to calculate the total energy. Also we have used the Engel-Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Our results including lattice parameter, bulk modulus, density of states, the reflectivity spectra, the refractive index and band gap are compared with the experimental data. We present calculations of the frequency-dependent complex dielectric function ε(ω) and its zero-frequency limit ε1(0).  相似文献   

14.
First-principles calculations of electronic structure and magnetic properties based on density-functional theory were performed for MnFeP1−xSix (0.44?x?0.60) alloys which are considered as promising magnetocaloric refrigerants. We used the full-potential APW+lo method and treated the random order of P(Si) atoms in the ZrNiAl-type structure in a virtual-crystal approximation. A non-monotonic behavior of the alloy magnetization as a function of x was obtained, in qualitative agreement with experiment, and explained in terms of the spin-polarized densities of states.  相似文献   

15.
The structural stability of CeAg has been studied by self-consistent full-potential linearized augmented plane wave method (FP_LAPW) based on the density functional theory (DFT). The result shows that the low-temperature phase of CeAg is not a simple tetragonal structure. The degenerate d states at the Fermi level are split because of atomic shifts, which result in the cubic-to-tetragonal transition.  相似文献   

16.
The effect of In doping on the electronic structure and optical properties of Sr2 TiO4 is investigated by a firstprinciples calculation of plane wave ultrasoft pseudopotentials based on density functional theory. The calculated results reveal that corner-shared TiO6 octahedra dominate the main electronic properties of Sr2TiO4 and the covalency of the Ti-O(1) bond in the ab plane is stronger than that of the Ti-O(2) bond along the c-axis. After In doping, there is a little lattice expansion in Sr2In0.125 Ti0.875 O4 and the interaction between the Ti-O bond near the impurity In atom is weakened. The binding energies of Sr2TiO4 and Sr2In0.125Ti0.875O4 estimated from the electronic structure calculations indicate that the crystal structure of Sr2In0.125 Ti0.875 O4 is still stable after doping, but its stability is lower than that of undoped Sr2TiO4. Moreover, the valence bands (VBs) of the Sr2In0.125Ti0.875O4 system consist of O 2p and In 4d states, and the mixing of O 2p and In 4d states makes the top VBs shift significantly to high energies, resulting in visible light absorption. The adsorption of visible light is of practical importance for the application of St2 TiO4 as a photocatalyst.  相似文献   

17.
First-principles full potential linearized augmented plane wave (FPLAPW) calculations have been performed to study the electronic structure and the magnetic properties of 3-Cyanobenzo-1,3,2-dithiazolyl,C7H3S2N2. The density of states (DOS), the total energy of the cell, and the spontaneous magnetic moment of C7H3S2N2 were all calculated. The calculations reveal that the low-temperature phase of the compound C7H3S2N2 has a stable metal-antiferromagnetic ground state, and there exists an antiferromagnetically coupled interactions between the dithiazolyl radical(1), which is in good agreement with experiment.  相似文献   

18.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

19.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

20.
The structural and elastic properties of the antiperovskite semiconductor AsNMg3 are investigated using the full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method within the generalized gradient in the frame of the density functional theory. The ground state properties such as lattice constant, bulk modulus, pressure derivative of the bulk modulus and elastic constants are in good agreement with numerous experimental and theoretical data. Through the quasi-harmonic Debye model, in which the phononic effects are considered, we have obtained successfully the thermodynamic properties such as the thermal expansion coefficient, Debye temperature and specific heats in the whole pressure range from 0 to 30 GPa and temperature range from 0 to 1200 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号