首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The surface interaction of CO2 with the perovskite-type oxide LaMnO3+y has been investigated by means of density functional theory calculations and experimental measurements of adsorption isotherms in the temperature range 298-473 K. A (1 0 0) oriented slab of the cubic structure was used for modeling CO2 adsorption. The reference unit cell contains alternating LaO+ layers and layers; one slab is LaO+-terminated and the opposite surface is terminated. A Freundlich isotherm fitted the experimental data satisfactorily. Analysis of the isosteric heat revealed an energetically heterogeneous character for the lanthanum manganite oxide surface, mainly due to the degree of heterogeneity of the adsorption center and due to the adsorbate-adsorbate lateral interactions. Considering theoretical calculations and thermodynamical approaches, two types of active sites were found to be responsible for irreversible and reversible adsorption of CO2 as a function of surface coverage and O2 treatment. Strong adsorption takes place on the surface containing La cations. The strongest adsorption is associated with surface oxygen vacancies, center. The next strongest adsorption, a flat adaptation of CO2 molecules with respect to the surface sites, with a strong binding to a surface oxygen, leads to chemisorbed carbonate species. These adsorption modes are chiefly indicative of a high basic character of the lanthanum manganite oxide surface. Several cationic sites formed by lanthanum and manganese cations are able to weakly adsorb CO2 molecules in perpendicular or bridged forms. The latter adsorption modes suggest a weak acidic character of the manganite adsorbent.  相似文献   

2.
3.
In this work, a computational technique based on semiempirical SCF MO method MSINDO, has been used for investigation of the adsorption and photocleavage of para-chlorophenol (p-CP) molecule on the anatase TiO2 (0 0 1) and (1 0 0) surfaces. The surfaces have been modeled with two saturated clusters Ti21O58H32 and Ti36O90H36. The optimization of the perpendicular conformation of p-CP molecule relative to the anatase TiO2 (1 0 0) surface, has resulted in a linkage of the molecule to the surface titanium atom via phenolic oxygen atom. We studied the aromatic ring cleavage by singlet oxygen (1O2) and superoxide radical anion () and accordingly, relevant mechanisms are suggested. The results reveal that the ring opening path of p-CP molecule on TiO2 (1 0 0) surface, following the single electron transfer/ mechanism, is energetically more favourable than the 1O2/dioxetane mechanism.  相似文献   

4.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   

5.
Oxygen adsorption on Mo2C(0 0 0 1) has been investigated with angle-resolved photoemission spectroscopy (ARPES). When the surface is reacted with O2, the O 2p-induced states are formed at 4.1 and 5.3 eV at the point. The emissions around the Fermi level are also intensified by oxygen adsorption, which is due to the formation of a partially filled state. It is found that the reactivity of the surface toward H2O adsorption is much enhanced by pre-adsorption of oxygen. The reactivity is found to be maximized at θO ∼ 0.2.  相似文献   

6.
We report a low-temperature dynamics study of condensed layers of NF3 on Au(1 1 1) by time-of-flight electron-stimulated desorption ion angular distribution (TOF-ESDIAD), temperature-programmed desorption (TPD) and low-temperature scanning tunneling microscopy (LT-STM). Upon adsorption at 30 K, molecular NF3 adsorption occurs first at the step edges and at minor terrace defect sites with the formation of 2D islands. Within the islands, NF3 is adsorbed in an upright conformation via the nitrogen lone pair electrons projecting fluorine atoms away from the surface as judged by the presence of only a sharp F+ central beam in the ESDIAD pattern. At higher coverages, 3D islands start to populate the surface. Electron bombardment of a thick NF3 (∼6 ML) layer adsorbed on the Au(1 1 1) surface leads to emission of F+, N+, NF+, and ions as observed in the TOF-ESD distribution. Upon heating to ∼37 K, a sudden decrease of the and ion yield, which is not related to thermal desorption, is observed which reflects the surface migration of NF3 molecules, leading to local thinning of the film. The thinning process occurs at the temperature of onset of molecular rotations and self-diffusion in the bulk NF3 crystal. In this process, some NF3 molecules move closer to the surface which results in higher efficiency for ion neutralization by the underlying metal surface. In the TPD spectra, the monolayer desorption is observed to begin at ∼65 K, exhibiting zero-order kinetics with an activation energy of 21 kJ/mol.  相似文献   

7.
Adsorption of CO molecules and Pb atoms on the Ni(1 1 1) and Ni3Al(1 1 1) substrates is studied theoretically within an ab initio density-functional-theory approach. Stable adsorption sites and the corresponding adsorption energies are first determined for stoichiometric surfaces. The three-fold hollow sites (fcc for Pb and hcp for CO) are found most favourable on both substrates. Next, the effect of surface alloying by a substitution of selected topmost substrate atoms by Pb or Ni atoms on the adsorption characteristics is investigated. When the surface Al atoms of the Ni3Al(1 1 1) substrate are replaced by Ni atoms, the Pb and CO adsorption energies approach those for a pure Ni(1 1 1) substrate. The Pb alloying has a more substantial effect. On the Ni3Al(1 1 1) substrate, it reduces considerably adsorption energy of CO. On the Ni(1 1 1) substrate, CO binding strengthens slightly upon the formation of the Ni(1 1 1)p(2×2)-Pb surface alloy, whereas it weakens drastically when the Ni(1 1 1)-Pb surface alloy is formed.  相似文献   

8.
The adsorption, photoreduction and chemical activity of oxygen molecules on the (1 0 0) anatase surface have been investigated here together with the effects that surface oxygen vacancies (VO) can have on these O2-related processes. We use an original approach by treating molecules on the TiO2 surface like surface defects in the same framework successfully used for defects in semiconductors. The achieved results: (i) give the first theoretical evidence of an acceptor behaviour of an adsorbed O2 molecule, which is at the origin of its photoreduction; (ii) show that the VO donor character is strongly affected by the interaction with O2; and (iii) suggest that the release of radicals as well as the formation of O2-related radicals may be favoured by photogenerated electrons in presence of surface VO’s.  相似文献   

9.
F. Wiame  V. Maurice  P. Marcus 《Surface science》2006,600(18):3540-3543
The reactivity of clean and pre-oxidised Cu(1 1 1) surfaces exposed to sulphur (H2S) has been studied at room temperature by Auger electron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. On the clean surface, the sulphur-saturated surface structure is dominated by the or so-called “zigzag” superstructure. It is shown that a single orientation domain is favoured by the slight misorientation (∼2°) of the surface with respect to the (1 1 1) plane. Scanning tunneling microscopy measurements also revealed two minority structures. Pre-oxidation was performed by exposure to 1.5 × 104 L of O2 at 300 °C. Under exposure to H2S (1 × 10−7 mbar) at room temperature, the oxygen is totally substituted by sulphur. Once initiated, sulphur adsorption seems to propagate to cover the whole surface on the O-covered surface faster than on the clean Cu(1 1 1). At saturation by adsorbed sulphur, the surface is completely covered by the superstructure of highest coverage. This enhanced uptake of sulphur is assigned to the surface reconstruction of the copper surface induced by the pre-oxidation, causing a stronger reactivity of the Cu atoms released by the decomposition of the oxide.  相似文献   

10.
Jeong-Young Ji 《Surface science》2007,601(7):1768-1774
PH3 adsorption on Si(1 1 1)-7 × 7 was studied after various exposures between 0.3 and 60 L at room temperature by means of scanning tunneling microscopy (STM). PH3-, PH2-, H-reacted, and unreacted adatoms can be identified by analyzing empty-state STM images at different sample biases. PHx-reacted rest-atoms can be observed in empty-state STM images if neighboring adatoms are hydrogen terminated. Most of the PH3 adsorbs dissociatively on the surface, generating H- and PH2-adsorbed rest-atom and adatom sites. Dangling-bonds at rest-atom sites are more reactive than adatom sites and the faulted half of the 7 × 7 unit cell is more reactive than the unfaulted half. Center adatoms are overwhelmingly preferred over corner adatoms for PH2 adsorption. The saturation P coverage is ∼0.18 ML. Annealing of PH3-reacted 7 × 7 surfaces at 900 K generates disordered, partially P-covered surfaces, but dosing PH3 at 900 K forms P/Si(1 1 1)- surfaces. Si deposition at 510 K leaves disordered clusters on the surface, which cannot be reordered by annealing up to 800 K. However, annealing above 900 K recreates P/Si(1 1 1)- surfaces. Surface morphologies formed by sequential rapid thermal annealing are also presented.  相似文献   

11.
12.
Using the interaction parameters up to the third neighbors and activated form of O and CO diffusion and their reaction, the model has been proposed for Monte-Carlo simulations describing the catalytic O + CO → CO2 reaction and occurring phase transitions on Pd(1 1 1) surface. Upon adsorption of CO the pre-adsorbed oxygen transforms from p(2 × 2)O phase into and phases in the limit of room and moderate temperatures, respectively. We demonstrate that the kinetic effects determine both the occurrence of the p(2 × 1)O and disappearance of the phases at moderate and low temperatures, respectively. Using reaction rate as a fit parameter, we show that at room temperature the start of the reaction can be synchronized with the occurrence of phase.  相似文献   

13.
Pure and 0.384% Pb2+ ions doped goethite samples were prepared in the laboratory by the coprecipitation method. The laboratory-prepared goethite samples were characterized for pH of point of zero charge (pHpzc), surface area, XRD, TG-DTA, TEM, SEM and FTIR analysis, which suggest that the Pb2+ ions are incorporated into the crystals of goethite and are also present on the surface in the hydroxylated form. Chromate adsorption studies were carried out in the concentration range 0.25-2.01 mmol L−1 at pH 3, 5 and 7, which show that maximum chromate is adsorbed at the lowest pH of 3 by both the samples of goethite. Effect of temperature on the adsorption of chromate, in the range 303-323 K, shows that the process of adsorption is endothermic in case of pure goethite and exothermic in case of Pb-doped goethite. The values of isosteric heat of adsorption were positive for pure goethite and negative for Pb-doped goethite, which are consistent with the effect of temperature on the process of adsorption. Langmuir isotherm was found applicable to the experimental data. FTIR analysis and equilibrium pH changes reveal that at pH 3 outersphere while at pH 5 and 7 innersphere complexation is the dominant mechanism for chromate adsorption by both the samples of goethite.  相似文献   

14.
J.M. Morbec 《Surface science》2006,600(5):1107-1112
In this work we have performed an ab initio total energy investigation of the Ge adsorption process on the Si-terminated SiC(0 0 0 1)- and (3 × 3) surfaces. We find that Ge adatoms lying on the topmost sites of the and (3 × 3) surfaces represent the energetically more stable configurations at the initial stage of the Ge adsorption on the SiC(0 0 0 1) surface. The Si → Ge substitutional adsorption processes have been examined as a function of the Si and Ge chemical potentials. Increasing the Ge coverage, we verify that the formation of Ge wetting layer on the surface, and Ge nanocluster on the (3 × 3) surface are the energetically more stable configurations, in accordance with recent experimental findings.  相似文献   

15.
Equilibrium adsorption positions and diffusion pathways of the ions K+ and Cl as well as of the molecule KCl on the terrace of the (0 0 1) surface of KCl were determined by shell model calculations allowing relaxations of the crystal lattice in the vicinity of the adsorbed species. For the ions each one adsorption position was found, in which the ions are located above the hollow site at the center of a slightly distorted square formed by two cations and two anions of the uppermost surface layer of the KCl crystal. Adsorption energies of −1.52 eV for K+ and −1.61 eV for Cl were calculated. Jumps of the ions occur from these positions to adjacent hollow positions in the ±[1 0 0] and ±[0 1 0] directions with a jump distance of a0/2. The activation energies for the jumps result as 0.142 for K+ and 0.152 eV for Cl and the mean diffusion lengths as and . For the KCl molecule four distinct adsorption minima with energies between −0.932 and −0.825 eV were found. Because of the smaller lattice relaxation caused by the molecule the adsorption energies are considerably lower than for the single ions. In the position with the largest adsorption energy the ions of the admolecule are again placed above adjacent hollow sites. In two more adsorption positions only one ion is at the hollow site and the other one in a top position above an oppositely charged ion of the surface. In the fourth position with the smallest adsorption energy both ions are in top positions. Jumps between the different adsorption positions proceed by rotations of the molecule, in which one of its ions remains essentially attached to a local minimum position. The diffusion and desorption of a KCl molecule was studied by a Monte Carlo method, resulting in a mean diffusion length xs (nm) = 0.39 exp[0.84 (eV)/2kT], which agrees rather well with an experimental value of . Values for the mean stay time as well as for the surface diffusion coefficient are derived.  相似文献   

16.
17.
18.
The structure, growth and stoichiometry of heteroepitaxial Pr2O3 films on Si(1 1 1) were characterized by a combined RHEED, XRD, XPS and UPS study in view of future applications as a surface science model catalyst system. RHEED and XRD confirm the growth of a (0 0 0 1) oriented hexagonal Pr2O3 phase on Si(1 1 1), matching the surface symmetry by aligning the oxide in-plane direction along the Si azimuth. After an initial nucleation stage RHEED growth oscillation studies point to a Frank-van der Merwe growth mode up to a thickness of approximately 12 nm. XPS and UPS prove that the initial growth of the Pr2O3 layer on Si up to ∼1 nm thickness is characterized by an interface reaction with Si. Nevertheless stoichiometric Pr2O3 films of high crystalline quality form on top of these Pr-silicate containing interlayers.  相似文献   

19.
20.
We have studied the influence of CO on the adsorption of benzene on the Co(0 0 0 1) surface using LEED, XPS, TDS and work function measurements. CO was found to reduce the benzene adsorption, but even at saturation CO exposure no complete blocking was observed. Thermal desorption of the coadsorbed layer featured CO and H2 peaks indicating partial dehydrogenation of benzene and retaining of the CO bond. Ordered LEED structures were found with all coverages: Pre-adsorption of CO led to patterns already seen for pure carbon monoxide adsorption. Pre-adsorption of benzene showed the known structure of pure benzene also with small CO exposures, but higher CO exposures yielded a mixture of and patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号