首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various temperature-, pressure- and field dependent investigations on CePd2Ga3 indicate this ternary compound as belonging to the group of ferromagnetically ordered Kondo lattices, with the Curie temperatureT C =6K and the Kondo temperatureT K =4K. The first excited crystal field level of this hexagonal compound is about 40 K above the crystal field ground state, while the overall splitting is much larger.  相似文献   

2.
We report the influence of external high-pressure (P up to 8 GPa) on the temperature (T) dependence of electrical resistivity (ρ) of a Yb-based Kondo lattice, YbPd2Si2, which does not undergo magnetic ordering under ambient pressure condition. There are qualitative changes in the ρ(T) behavior due to the application of external pressure. While ρ is found to vary quadratically below 15 K (down to 45 mK) characteristic of Fermi-liquids, a drop is observed below 0.5 K for P=1 GPa, signaling the onset of magnetic ordering of Yb ions with the application of P. The T at which this fall occurs goes through a peak as a function of P (8 K for P=2 GPa and about 5 K at high pressures), mimicking Doniach's magnetic phase diagram. We infer that this compound is one of the very few Yb-based stoichiometric materials, in which one can traverse from valence fluctuation to magnetic ordering by the application of external pressure.  相似文献   

3.
We report the results of our investigation in CeNi2−xCuxSn2 (x=0, 0.4, 1.0, 1.6 and 2.0), a new pseudoternary series with CaBe2Ge2-type tetragonal structure. Substitution of Cu for Ni leads to a linear increase in the constants a, c and the unit cell volume v. As probed by the low temperature dependence of ac susceptibility χac(T), the Tf temperature, which corresponds to the freezing temperature of the spin-glass clusters, is annihilated above 2.0 K significantly for the samples with x≥1.6. This observation proves conclusively that the Ni-rich samples in the series CeNi2−xCuxSn2 have the advantage of forming the spin-glass-like state.  相似文献   

4.
Field dependent specific heat measurements and a study of elastic neutron scattering experiments characterize CePd2Ga3 as a ferromagnetic Kondo compound with ordering in the basal plane belowT C 6 K. The crystal field ground state of cerium in this hexagonal compound is the |±1/2> eigenstate. In the scope of a phenomenological model, the coupling constant and the Kondo temperature have been deduced.  相似文献   

5.
The structures and magnetocaloric effects of (Gd1−xTbx)Co2 (x=0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, and 1) pseudobinary compounds were investigated by X-ray powder diffraction and magnetic properties measurement. The results show that the Tc of the alloy is near room temperature when X=0.6. The magnetic entropy changes of the compounds increase from 1.7 to 3.6 J/kg K with increasing the content of Tb under an applied field up to 2 T. All the compounds exhibit second order magnetic change. As a result, the values of their ΔSM are lower than that of some large magnetocaloric effect materials.  相似文献   

6.
In this work, we calculate the magnetocaloric effect in the compounds Gd(Zn1−xCdx). We use a model Hamiltonian of interacting spins in which the indirect exchange interaction parameter between localized spins was calculated as a function of Cd concentration. The calculated isothermal entropy changes and the adiabatic temperature changes upon magnetic field variations are in good agreement with the available experimental data.  相似文献   

7.
Quasibinary Laves systems (Ce1−xLax)Ru2 and (Ce1−yCay)Ru2 doped with 111In were synthesized at a pressure of 8 GPa, and variations of the electric quadrupole interaction of 111Cd at the Ru sites have been studied by the method of time-differential perturbed angular correlation in a wide range of Ce-La and Ce-Ca relative concentrations. In the first case two sites with quadrupole frequencies νQ≅220 and 150 MHz persist at x≤0.2, while at x≥0.3 only the higher frequency component remains in the spectra, which are similar to that of pure LaRu2. In the series (Ce1−yCay)Ru2, at y≥0.03 the lower frequency component was washed out except in samples with y=0.1 and 0.2, where it was restored.  相似文献   

8.
We report the structure and magnetic properties of Pr1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides by means of X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Pr leads to a linear decrease in the lattice constants and the unit cell volume. The samples with x=0 and x=0.8 have spin reorientation temperature. The results are collected in a phase diagram.  相似文献   

9.
We report electron-spin resonance (ESR) measurements in polycrystalline samples of (Gd1−xYx)2PdSi3. We observe the onset of a broadening of the linewidth and of a decrease of the resonance field at approximately twice the Néel temperature in the paramagnetic state. This characteristic temperature coincides with the electrical resistivity minimum. The high-temperature behavior of the linewidth is governed by a strong bottleneck effect.  相似文献   

10.
We studied, strongly correlated states in triangular artificial atoms. Symmetry-driven orbital degeneracy of the single particle states can give rise to an SU(4) Kondo state with entangled orbital and spin degrees of freedom, and a characteristic phase shift δ=π/4. Upon application of a Zeeman field, a purely orbital Kondo state is formed with somewhat smaller Kondo temperature and a fully polarized current through the device. The Kondo temperatures are in the measurable range. The triangular atom also provides a tool to systematically study the singlet-triplet transitions observed in recent experiments [Phys. Rev. Lett., 88 (2002) 126803, cond-mat/0208268 (2002)].  相似文献   

11.
The structure and magnetic properties of Nd1−xHoxMn2Ge2 (0.0≤x≤1.0) germanides were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) techniques and AC magnetic susceptibility measurements. All compounds crystallize in the ThCr2Si2-type structure with the space group I4/mmm. Substitution of Ho for Nd leads to a linear decrease in the lattice constants and the unit cell volume, and the magnetic interactions in the Mn sublattice cross over from a ferromagnetic character to an antiferromagnetic one. A typical SmMn2Ge2-like behavior is observed for x=0.6 and 0.8. The results are collected in a phase diagram.  相似文献   

12.
In this communication, we report the effect that doping Y2BaCuO5 with Dy has on its two-dimensional (2D) magnetic structure. Pure samples at both ends of the series, as well as samples doped with 1, 5, 10 and 25% dysprosium, have been characterised using X-ray diffraction, and AC susceptibility together with neutron diffraction studies on the 1 and 5% samples, which were used to measure the magnetic ordering at low temperatures. The results show that 1% Dy is enough to disrupt the 2D magnetic ordering turning it into a 3D array. The low dysprosium concentration indicates that the 3D ordering is achieved without the existence of a rare earth magnetic sublattice. The change in the ordering temperature from 27 K for the pure Y2BaCuO5 to 16 K for the 1 and 5% Dy compounds, together with the parameters from the AC susceptibility fittings, reveal that the effect of the Dy doping affects the electronic structure of the Cu ions that become involved in the superexchange pathways. The discrepancy between the parameters obtained by the Curie-Weiss fittings of the real part of the AC susceptibility and the neutron diffraction results, shows that the exchange mechanism deviates from the mean field model for all dysprosium concentrations.  相似文献   

13.
14.
Parameters of the electric quadrupole interaction for the first excited state (E=89.7 keV) of 99Ru nuclei for a number of the cubic Laves phase compounds Ce1−xLaxRu2, synthesized at high pressure, were determined by the perturbed angular γγ-correlation method. Compounds were synthesized at 8 GPa. It was revealed that the decrease of the average valence of a rare earth ion, caused by the substitution of La for Ce, results in the monotonous decrease of the quadrupole frequency νQ from 43.3 MHz for CeRu2 to 33.1 MHz for LaRu2.  相似文献   

15.
The structural and magnetic properties of Cr1+x(Se1−yTey)2 having a NiAs structure has been studied for (1+x)=1.27, 1.32 and 1.36 and y=0.75 by means of the Korringa-Kohn-Rostoker (KKR) band structure method. The sub-stoichiometry and the disorder on the chalcogenide sub-lattice has been treated by means of the coherent potential approximation (CPA) alloy theory. From total energy calculations a preferential site occupation on the Cr sub-lattice was found together with an antiparallel alignment of the magnetic moments on the two inequivalent Cr layers. The magnetic properties at finite temperature has been studied by means of Monte Carlo simulations on the basis of a classical Heisenberg Hamiltonian and the exchange coupling parameters calculated from first principles. This approach allowed to determine the critical temperature in good agreement with experiment.  相似文献   

16.
The influence of the substitution of Ga atoms for Co atoms in DyCo2 compounds on magnetocaloric properties has been investigated. A series of DyCo2−xGax alloys with x=0, 0.03, 0.06, 0.1, 0.15, and 0.2 was prepared by the arc-melting method for this investigation. Experimental results revealed that the Ga substitution for Co in DyCo2 can form a single phase with the cubic Laves phase structure up to x=0.2. As the Ga content x increases, the lattice parameter and the Curie temperature Tc increases from 143 to 196 K linearly. The maximum magnetic entropy changes in a low field change of 0-1.5 T, increasing from 8.24 to 10.61 J/K kg when the Ga content x increases from 0 to 0.03, but decreasing gradually to 3.51 J/K kg as the Ga content further increases to x=0.2. All the samples show a relatively large magnetic entropy change with very small hysteresis loss.  相似文献   

17.
A new density of states model, referred to as the Gaussian density of states, is proposed for the quantitative understanding of the electrical conductivity behaviour of FeSi Kondo insulating system. The effects of electron correlation and disorder, responsible for the physical properties of this system, are judiciously incorporated in this model. Within the framework of this model, a detailed quantitative analysis of the temperature and pressure dependent electrical conductivity data of FeSi1−xGex (x=0.0, 0.05 and 0.20) reported by Awadhesh Mani et al. [Phys. Rev. B 63 (2001) 115103] has been carried out. From these analyses the complicated pressure dependence of energy gap seen experimentally in these samples could be satisfactorily rationalized.  相似文献   

18.
The magnetic nanoparticles of Mn1−xCuxFe2O4 (x=0, 0.2) were prepared by using a sol-gel method. It is proved that both the MnFe2O4 and Mn0.8Cu0.2Fe2O4 nanoparticle samples have superparamagnetic feature. Although the particle sizes are the same, substitution of a small fraction Cu for Mn results in the increase of magnetocrystallite anisotropy energy, thus enhances the blocking temperature from 130 K for MnFe2O4 to 260 K for Mn0.8Cu0.2Fe2O4. Mössbauer spectroscopy confirms that the anisotropy constant K of the Mn0.8Cu0.2Fe2O4 material is distinctly higher than that of the MnFe2O4 compound. Increase of the blocking temperature suggests that the approach we employed is effective to tackle the ‘superparamagnetic limit’ problem.  相似文献   

19.
A new compound UPd2Sb was prepared and studied by means of X-ray diffraction, magnetization, electrical resistivity, magnetoresistivity, thermoelectric power and specific heat measurements. The phase crystallizes with a cubic structure of the MnCu2Al-type (s.g. ). It orders antiferromagnetically at TN=55 K and exhibits a modified Curie-Weiss behaviour with reduced effective magnetic moment at higher temperatures. The electrical resistivity behaves in a manner characteristic of systems with strong electronic correlations, showing Kondo effect in the paramagnetic region and Kondo-like response to the applied magnetic field. The Seebeck coefficient exhibits a behaviour expected for scattering of conduction electrons on a narrow quasiparticle band near the Fermi energy. The low-temperature electronic specific heat in UPd2Sb is moderately enhanced being about 81 mJ/mol K2.  相似文献   

20.
A series of Gd(1−x)Bx alloys have been prepared by arc melting method. After introducing small quantity of B atom in Gd, the Curie temperature of these alloys increase while the magnetic entropy changes are almost same as that of Gd. The refrigerant capacities of these alloys are also greater than that of Gd. These results suggest that Gd(1−x)Bx alloys may be utilized as refrigerant in household magnetic refrigeration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号