首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel method based on the paired ion electrospray ionization (PIESI) mass spectrometry has been developed for determination of acidic pesticides at ultratrace levels in surface and ground waters. The proposed approach provides greatly enhanced sensitivity for acidic pesticides and overcomes the drawbacks of the less sensitive negative ion mode ESI-MS. The limits of detection (LODs) of 19 acidic pesticides were evaluated with four types of dicationic ion-pairing reagent (IPR) in both single ion monitoring (SIM) and selected reaction monitoring (SRM) mode. The LOD of 19 pesticides obtained with the use the optimal dicationic ion-pairing reagent ranged from 0.6 pg to 19 pg, indicating the superior sensitivity provided by this method. The transition pathways for different pesticide-IPR complexes during the collision induced dissociation (CID) were identified. To evaluate and eliminate any matrix effects and further decrease the detection limits, off-line solid-phase extraction (SPE) was performed for DI water and a river water matrix spiked with 2000 ng L−1 and 20 ng L−1 pesticides standards respectively, which showed an average percent recovery of 93%. The chromatographic separation of the acidic pesticides was conducted by high-performance liquid chromatography (HPLC) using a C18 column (250 mm × 2.1 mm) in the reversed phase mode using linear gradient elution. The optimized HPLC–PIESI-MS/MS method was utilized for determination of acidic pesticide at ng L−1 level in stream/pond water samples. This experimental approach is 1–3 orders of magnitude more sensitive for these analytes than other reported methods performed in the negative ion mode.  相似文献   

2.
This paper reports a comprehensive sensitive multi-residue liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for detection, identification and quantitation of 73 pesticides and their related products, a total of 98 analytes, belonging to organophosphorus pesticides (OPPs) and carbamates, in foods. The proposed method makes use of a modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) procedure that combines isolation of the pesticides and sample clean-up in a single step. Analysis is performed by liquid chromatography-electrospray ionization–tandem mass spectrometry operated in the multiple reaction monitoring (MRM) mode, acquiring two specific precursor-product ion transitions per target compound. Two main fragment ions for each pesticide were obtained to achieve the identification according to the SANCO guidelines 10684/2009. The method was validated with various food samples, including edible oil, meat, egg, cheese, chocolate, coffee, rice, tree nuts, citric fruits, vegetables, etc. No significant matrix effect was observed for tested pesticides, therefore, matrix-matched calibration was not necessary. Calibration curves were linear and covered from 1 to 20 μg L−1 for all compounds studied. The average recoveries, measured at 10 μg kg−1, were in the range 70–120% for all of the compounds tested with relative standard deviations below 20%, while a value of 10 μg kg−1 has been established as the method limit of quantitation (MLOQ) for all target analytes. Similar trueness and precision results were also obtained for spiking at 200 μg kg−1. Expanded uncertainty values were in the range 21–27% while the HorRat ratios were below 1. The method has been successfully applied to the analysis of 700 food samples in the course of a baseline monitoring study of OPPs and carbamates.  相似文献   

3.
A sensitive and specific method for the quantitative determination of zearalenone (ZEN) and its major metabolites (α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol (α-ZAL), β-zearalanol (β-ZAL) and zearalanone (ZAN)) in animal plasma using liquid chromatography combined with heated electrospray ionization (h-ESI) tandem mass spectrometry (LC–MS/MS) and high-resolution Orbitrap® mass spectrometry ((U)HPLC–HR–MS) is presented. The sample preparation was straightforward, and consisted of a deproteinization step using acetonitrile. Chromatography was performed on a Hypersil Gold column (50 mm × 2.1 mm i.d., dp: 1.9 μm, run-time: 10 min) using 0.01% acetic acid in water (A) and acetonitrile (B) as mobile phases.  相似文献   

4.
We developed a new analysis method for the N-methyl carbamate pesticides in juice and wine. The juice and wine were diluted with ultra pure water, and determined by electrospray ionization tandem mass spectrometry (ESI LC/MS/MS) with direct sample injection into a short column. The new method, including sample preparation and determination, is simple and rapid, and allows simultaneous determination of nine N-methyl carbamate pesticides in juice and wine within analysis time that is much shorter as compared with the traditional method. The average recoveries from juice and wine fortified at the level of 0.1 ppm ranged from 59.6 to 126.7% with the coefficients of variation ranging from 0.4 to 5.1% for intra-day (n = 5 × 3 days) and from 0.5 to 22.6% for inter-day (n = 15). At the fortified level of 0.5 ppm, the recoveries ranged from 69.3 to 127.2% with the coefficients of variation ranging from 0.4 to 6.9% for intra-day (n = 5 × 3 days) and from 0.5 to 22.6% for inter-day (n = 15). The method is considered to be satisfactory for the monitoring of the carbamate pesticides residues in juice and wine, suggesting that the present method is applicable to other pesticide residues in foods.  相似文献   

5.
A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C18 cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L−1 and limits of quantification (LOQs) from 0.003 to 1.452 μg L−1. For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L−1 and LOQs ranged from 0.011 to 3.494 μg L−1. Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L−1, whereas methiocarb sulfoxide was detected at trace levels in two samples.  相似文献   

6.
As a suitable way for routine screening of pesticides and control of other organic contaminants in water, the combination of liquid chromatography triple quadrupole tandem mass spectrometry (LC–QqQ-MS/MS) and liquid chromatography–hybrid quadrupole time-of-flight mass spectrometry (LC–QTOF-MS) has been applied to the analysis of 63 surface and waste water samples after conventional solid-phase extraction (SPE). The extracts were screened for 43 pesticides or degradation products by LC–QqQ-MS/MS achieving limits of detection (LOD) ranged from 0.04 to 2 ng L−1. Of the 43 selected pesticides, 33 were detected in water samples. The ESI–QTOF MS instrument was run using two simultaneous acquisition functions with low and high collision energy (MSE approach) and acquiring the full mass spectra. A home-made database containing more than 1100 organic pollutants was used for substance identification. Around 250 of these compounds were available at the laboratory as reference standards. Five pesticides and 3 of their degradation products, different to those selected in the QqQ method, were detected by QqTOF-MS. Thirteen pharmaceuticals and two drugs of abuse were also identified in the samples. In practice, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. Mutual confirmation and evidence of co-occurrence of several other organic contaminants were the main advantages of the combination of both techniques.  相似文献   

7.
A high-field asymmetric waveform ion mobility spectrometry (FAIMS)-based method for the determination of the mycotoxin zearalenone (ZON) and its metabolites α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), and β-zearalanol (β-ZAL), in a cornmeal (maize) matrix is described. Detection limits achieved using the FAIMS device coupled with electrospray ionization (ESI) and mass spectrometric (MS) detection are 0.4 ng mL−1 for ZON and 3 ng mL−1 for α-ZOL + β-ZOL, and β-ZAL. This represents a significant improvement when compared to detection limits determined using ESI-MS or ESI-tandem mass spectrometry (MSMS) analytical methods. The developed flow-injection (FIA)-ESI-FAIMS-MS method was applied to reference materials ERM-BC-716 and ERM-BC-717 certified for ZON and excellent agreement with the certified values was observed.  相似文献   

8.
This paper describes the development of a multi-residue method for the determination of 36 emerging organic pollutants (26 biocides, 5 UV-filters and 5 benzothiazoles) in raw and treated wastewater, activated sludge and surface water using liquid chromatography–tandem mass spectrometry (LC–MS/MS). The target analytes were enriched from water samples adjusted to pH 6 by solid-phase extraction (SPE) on Oasis HLB 200 mg cartridges and eluted with a mixture of methanol and acetone (60/40, v/v). Extraction of freeze-dried sludge samples was accomplished by pressurized liquid extraction (PLE) using a mixture of methanol and water (50/50, v/v) as extraction solvent followed by SPE. LC–tandem MS detection was compared using electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) in positive and negative ionization mode. ESI exhibited strong ion suppression for most target analytes, while APCI was generally less susceptible to ion suppression but partially leading to ion enhancement of up to a factor of 10. In general, matrix effects could be compensated using stable isotope-labeled surrogate standards, indicated by relative recoveries ranging from 70% to 130%. In wastewater, activated sludge and surface water up to 33 analytes were detected. Maximum concentrations up to 5.1 and 3.9 μg L−1 were found in raw wastewater for the water-soluble UV-filters benzophenone-4 (BZP-4) and phenylbenz-imidazole sulfonic acid (PBSA), respectively. For the first time, the anti-dandruff climbazole was detected in raw wastewater and in activated sludge with concentrations as high as 1.4 μg L−1 and 1.2 μg g TSS−1, respectively. Activated sludge is obviously a sink for four benzothiazoles and two isothiazolones, as concentrations were detected in activated sludge between 120 ng g TSS−1 (2-n-octyl-4-isothiazolin-3-one, OIT) to 330 ng g TSS−1 (benzothiazole-2-sulfonic acid, BTSA).  相似文献   

9.
A sensitive and reliable method was developed and validated for detection and confirmation of melamine in egg based on gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Trichloroacetic acid solution was used for sample extraction and precipitation of proteins. The aqueous extracts were subjected to solid-phase extraction by mixed-mode reversed-phase/strong cation-exchange cartridges. Using ultra-performance liquid chromatography and electrospray ionization in the positive ion mode, melamine was determined by LC-MS/MS, which was completed in 5 min for each injection. For the GC-MS analysis, extracted melamine was derivatized with N,O-bis(trimethylsilyl)trifluoracetamide prior to selected ion monitoring detection in electron impact mode. The average recovery of melamine from fortified samples ranged from 85.2% to 103.2%, with coefficients of variation lower than 12%. The limit of detection obtained by GC-MS and UPLC-MS/MS was 10 and 5 μg kg−1, respectively. This validated method was successfully applied to the determination of melamine in real samples from market.  相似文献   

10.
Chen J  Wang F  Liu J  Lee FS  Wang X  Yang H 《Analytica chimica acta》2008,613(2):184-195
A new method based on accelerated solvent extraction (ASE) followed by ultra performance liquid chromatography (UPLC) analysis has been developed for the identification and quantification of major alkaloids in extracts of Coptis chinensis Franch. The UPLC system consisted of a dual detection system of photodiode array detector (PDA) and positive ion electrospray ionization-tandem mass spectrometry (ESI-MS/MS) in sequential configuration. The operational parameters of ASE including extraction solvent, extraction temperature, static extraction time and extraction cycles were optimized. UPLC analysis was performed on an ACQUITY UPLC BEH C18 column eluted by a mobile phase of acetonitrile spiked with a buffer solution consisting of 0.50% acetic acid and 20 mmol L−1 ammonium acetate. A tandem quadrupole spectrometer operating in either full scan mode or in MS/MS mode for multiple reaction monitoring (MRM) was used for the identification and quantitative analysis of eight major alkaloids in C. chinensis Franch extracts. The samples were also analyzed on a high-performance liquid chromatography-electrospray ionization-time-of-flight mass spectrometry (HPLC-ESI-TOF-MS) system to confirm the identification results. Three of the eight major alkaloids, berberine, palmatine and jatrorrhizine were quantified by UPLC-PDA and UPLC-MS/MS. The results indicated that both UPLC-PDA and UPLC-MS/MS methods were simple, sensitive and reliable for the determination of alkaloids in C. chinensis Franch. Seven Huanglian samples from different locations were analyzed using the established methods. UPLC fingerprints based on the distribution of the eight major alkaloids can serve as a rapid and reliable method for the authentication and quality evaluation of traditional Chinese medicine (TCM) herbs.  相似文献   

11.
An evaluation of the extraction of pesticides from onion by matrix solid-phase dispersion (MSPD) with the determination by liquid chromatography tandem mass spectrometry using electrospray as the ionization source (LC-ESI-MS/MS) was carried out. The performance of different sorbents, including reused C18 bonded silica, was evaluated. Different parameters affecting the extraction efficiency were evaluated, such as the type and amount of sorbent, the time of interaction after the fortification step, the time of sample dispersion and the elution solvent. The matrix effect regarding the recovery of the pesticides by MSPD was also investigated. The best results were obtained using 0.5 g of sample, 1.0 g reused C18, interaction time of 1 h, dispersion time of 5 min, and acetonitrile as the elution solvent. The method was validated by the fortification of the onion sample, free of pesticides, at different concentration levels (0.01, 0.1 and 1.0 mg kg−1). Average recoveries ranged from 78.3 to 120.4% and relative standard deviation below 20% was obtained. Detection and quantification limits ranged from 0.003 to 0.03 mg kg−1 and from 0.01 to 0.1 mg kg−1, respectively.  相似文献   

12.
This work reports a new sensitive multi-residue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection, confirmation and quantification of forty-six pesticides and transformation products belonging to different chemical classes in wines. The proposed method makes use of a solid-phase extraction (SPE) procedure with Oasis HLB cartridges that combines isolation of the pesticides and sample clean-up in a single step. Analysis is performed by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-MS/MS) operated in the selected reaction monitoring (SRM) mode, acquiring two specific precursor-product ion transitions per target compound. An investigation of matrix effects has been performed during method validation showing medium to low effects for the majority of the compounds. Limits of detection (LODs) were in the range 0.0003–0.003 mg L−1 and limits of quantification (LOQs) were in the range 0.001–0.01 mg L−1. The average recoveries, measured at two concentration levels (0.010 and 0.050 mg L−1), were in the range 70–110% for most of the compounds tested with % relative standard deviations below 20%, while a value of 0.010 mg L−1 has been established as the method limit of quantification (MLOQ) for all target species. Expanded uncertainty values were in the range 10–40% while the Horrat ratios were below 1. The method has been successfully applied to the analysis of 60 wine samples in the course of an annual monitoring study with carbendazim-benomyl, thiophanate-methyl and carbaryl being the most frequently determined pesticides.  相似文献   

13.
Three primary nerve agent degradation products (ethyl-, isopropyl- and pinacolyl methylphosphonic acid) have been determined in water samples using on-line solid phase extraction-liquid chromatography and mass spectrometry (SPE-LC–MS) with electrospray ionisation. Porous graphitic carbon was employed for analyte enrichment followed by hydrophilic interaction chromatography. Diethylphosphate was applied as internal standard for quantitative determination of the alkyl methylphosphonic acids (AMPAs). By treating the samples with strong cation-exhange columns on Ba, Ag and H form, the major inorganic anions in water were removed by precipitation prior to the SPE-LC–MS determination. The AMPAs could be determined in tap water with limits of detection of 0.01–0.07 μg L−1 with the [M−H] ions extracted at an accuracy of ±5 mDa. The within and between assay precisions at analyte concentrations of 5 μg L−1 were 2–3%, and 5–9% relative standard deviation, respectively. The developed method was employed for determination of the AMPAs in three natural waters and a simulated waste water sample, spiked at 5 μg L−1. Recoveries of ethyl-, isopropyl- and pinacolyl methylphosphonic acid were 80–91%, 92–103% and 99–106%, respectively, proving the applicability of the technique for natural waters of various origins.  相似文献   

14.
A novel method has been developed for the determination of epirubicin in human plasma by ultra performance liquid chromatography combined with tandem mass spectrometry (UPLC-MS/MS). Epirubicin and internal standard epidaunorubicin were achieved from plasma via solid-phase extraction (SPE) using Oasis HLB cartridge. The analysis was performed on an AcQuity UPLC™ BEH C18 column (1.7 μm, 50 mm × 1 mm i.d.) utilizing a gradient elution profile and a mobile phase consisting of 0.1% formic acid in water and acetonitrile. The analytes were detected using an electrospray ionization tandem mass spectrometry in positive ion mode with multiple reaction monitoring (MRM). This method combines both advantages of UPLC and MS/MS, producing superior reliability, sensitivity and accuracy to previously published methods. The calibration curve was linear (r2 = 0.998) over the concentration range of 0.50-100.0 ng/ml. The limits of detection (LOD) and quantification (LOQ) for epirubicin were 0.10 and 0.50 ng/ml using 0.2 ml plasma sample, respectively. Recoveries of greater than 89% with intra- and inter-day precision (R.S.D.) less than 12% were obtained at concentrations above the LOQ. The present method has been successfully applied to analyze human plasma samples taken from patients administered epirubicin intravenously. Also, the principal metabolite epirubicinol was detected in all the patient plasma samples under investigation. The proposed method is very rapid, reliable and sensitive, and can be applicable to therapeutical drug monitoring and pharmacokinetic studies of epirubicin.  相似文献   

15.
Liquid chromatography (LC)/tandem mass spectrometry (MS/MS) after supramolecular solvent-based microextraction (SUSME) was firstly used in this work for the enantioselective determination of chiral pesticides in natural waters. The method developed for the quantitation of the R- and S-enantiomers of mecoprop (MCPP) and dichlorprop (DCPP) involved the extraction of the herbicides in a supramolecular solvent (SUPRAS) made up of reverse aggregates of dodecanoic acid (DoA), analyte re-extraction in acetate buffer (pH = 5.0), separation of the target enantiomers on a chiral column of permethylated α-cyclodextrin under isocratic conditions, and detection of the daughter ions (m/z = 140.9 and 160.6 for MCPP and DCPP, respectively) using a hybrid triple quadrupole mass spectrometer equipped with an electrospray source operating in the negative ion mode. Similar recoveries (ca. 75%) and actual concentration factors (ca. 94) were obtained for both phenoxypropanoic acids (PPAs). The quantitation limits were 1 ng L−1 for R- and S-MCPP, and 4 ng L−1 for R- and S-DCPP, and the precision, expressed as relative standard deviation (n = 6) was in the ranges 2.4–2.7% ([R-MCPP] = [S-MCPP] = 5 ng L−1 and [R-DCPP] = [S-DCPP] = 15 ng L−1) and 1.6–1.8% (100 ng L−1 of each enantiomer). The SUSME-LC–MS/MS method was successfully applied to the determination of the enantiomers of MCPP and DCPP in river and underground waters, fortified at concentrations between 15 and 180 ng L−1 at variable enantiomeric ratios (ER = 1–9).  相似文献   

16.
Phytoestrogens activate a biological response in vertebrata where they can mime or modulate the action of endogenous estrogens. For this reason they have been subjected to several studies about their physiological effects on humans and many analytical methodologies for their determination in food matrices and physiological fluids have been developed. On the contrary, little information can be found in literature about the presence of isoflavones and coumestrol in the environment, even if it is known that this may have significance. In the present study we investigated the presence of nine selected free and conjugated phytoestrogens in environmental water. A liquid chromatography-mass spectrometry (LC-MS/MS) based analytical methodology was developed and employed for detection of target compounds in surface water and wastewater.The methodology uses solid-phase extraction, followed by high performance liquid chromatography coupled to tandem mass spectrometry using an electrospray (ESI) interface operating in positive ion mode (LC-ESI-MS/MS). The extraction was made with 200 mg, 6 mL OASIS HLB® cartridges. Recoveries for the selected compounds were in the 67-97% range for all the considered analytes. The method was employed for environmental monitoring. Samples of river water and wastewater collected over a 4-month period were analyzed with the developed procedure. Results showed the presence of isoflavones in most of the samples analyzed. Average concentration of target analytes found in wastewater sewage treatment plant influent ranged from 454 to 12 ng/L. In effluent water and river water the analytes were present at lower concentration.  相似文献   

17.
An acetonitrile-based extraction method for the analysis of 169 pesticides in soya grain, using liquid chromatography–tandem mass spectrometry (LC–MS/MS) in the positive and negative electrospray ionization (ESI) mode, has been optimized and validated. This method has been compared with our earlier published acetone-based extraction method, as part of a comprehensive study of both extraction methods, in combination with various gas chromatography–(tandem) mass spectrometry [GC–MS(/MS)] and LC–MS/MS techniques, using different detection modes. Linearity of calibration curves, instrument limits of detection (LODs) and matrix effects were evaluated by preparing standards in solvent and in the two soya matrix extracts from acetone and acetonitrile extractions, at seven levels, with six replicate injections per level. Limits of detection were calculated based on practically realized repeatability relative standard deviations (RSDs), rather than based on (extrapolated) signal/noise ratios. Accuracies (as % recoveries), precision (as repeatability of recovery experiments) and method limits of quantification (LOQs) were compared. The acetonitrile method consists of the extraction of a 2-g sample with 20 mL of acetonitrile (containing 1% acetic acid), followed by a partitioning step with magnesium sulphate and a subsequent buffering step with sodium acetate. After mixing an aliquot with methanol, the extract can be injected directly into the LC–MS/MS system, without any cleanup. Cleanup hardly improved selectivity and appeared to have minor changes of the matrix effect, as was earlier noticed for the acetone method. Good linearity of the calibration curves was obtained over the range from 0.1 or 0.25 to 10 ng mL−1, with r2 ≥ 0.99. Instrument LOD values generally varied from 0.1 to 0.25 ng mL−1, for both methods. Matrix effects were not significant or negligible for nearly all pesticides. Recoveries were in the range 70–120%, with RSD ≤ 20%. If not, they were still mostly in the 50–70% range, with good precision (RSD ≤ 20%). The method LOQ values were most often 10 μg kg−1 for almost all pesticides, with good repeatability RSDs. Apart from some minor pros and cons, both compared methods are fast, efficient and robust, with good method performances. The two methods were applied successfully in a routine analysis environment, during surveys in 2007 and 2008.  相似文献   

18.
Currently, there is growing interest in the degradation pathways of organic contaminants such as pesticides. In the case of pesticides, the determination of metabolites in agricultural products and environment is necessary as some of them could present similar toxicity to or even higher toxicity than the parent compound. The development of analytical methodology for the identification and quantification of carbendazim fungicide and its metabolites in cucumber was studied. Cucumber (cucumis sativus) is a global food in terms of economic importance and nutritional quality. Careful optimisation of the liquid chromatography–mass spectrometry (LC-MS)/MS parameters was achieved in order to attain a fast separation with the best sensitivity. The detection was carried out on an Ion-Trap tandem mass spectrometer (MS/MS) by electrospray ionisation in positive ion mode (ESI+) with multiple reaction monitoring (MRM).  相似文献   

19.
Tai Y  Cao X  Li X  Pan Y 《Analytica chimica acta》2006,572(2):230-236
High-performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC/ESI-MS/MS) was used to identify C-21 steroidal glycosides with immunological activities in roots of Cynanchum chekiangense. In the MS/MS spectra, fragmentation reactions of the [M + Na]+ were recorded to provide structural information about the glycosyl and aglycone moieties. To further confirm the fragments structures, off-line Fourier transform ion cyclotron resonance tandem mass spectrometry (FT-ICR-MS/MS) was also performed. In the study, four known steroidal glycosides cynascyroside C, chekiangensosides A and B, glaucoside H, and four novel steroidal glycosides chekiangensosides C, D, E and chekiangensoside A isomer were identified based on mass spectral data, NMR spectral data and standards. This is the first report on identifying steroidal glycosides in roots of C. chekiangense by HPLC/ESI-MS/MS directly, which could save time and material consuming efforts in traditional phytochemistry analysis.  相似文献   

20.
In mass spectrometry (MS)-based metabolomics studies, reference-free identification of metabolites is still a challenging issue. Previously, we demonstrated that the elemental composition (EC) of metabolites could be unambiguously determined using isotopic fine structure, observed by ultrahigh resolution MS, which provided the relative isotopic abundance (RIA) of 13C, 15N, 18O, and 34S. Herein, we evaluated the efficacy of the RIA for determining ECs based on the MS peaks of 20,258 known metabolites. The metabolites were simulated with a ≤25% error in the isotopic peak area to investigate how the error size effect affected the rate of unambiguous determination of the ECs. The simulation indicated that, in combination with reported constraint rules, the RIA led to unambiguous determination of the ECs for more than 90% of the tested metabolites. It was noteworthy that, in positive ion mode, the process could distinguish alkali metal-adduct ions ([M + Na]+ and [M + K]+). However, a significant degradation of the EC determination performance was observed when the method was applied to real metabolomic data (mouse liver extracts analyzed by infusion ESI), because of the influence of noise and bias on the RIA. To achieve ideal performance, as indicated in the simulation, we developed an additional method to compensate for bias on the measured ion intensities. The method improved the performance of the calculation, permitting determination of ECs for 72% of the observed peaks. The proposed method is considered a useful starting point for high-throughput identification of metabolites in metabolomic research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号