首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High undercoolings have been obtained in bulk Bi95Sb5 alloy melts by the cyclic superheating and cooling technology. The highest undercooling that was achieved in this paper is 121 K. The influence of various processing factors on the undercooling behavior is examined. Undercooling of 121 K leads to the formation of a metastable solid phase with the tetragonal crystal structure. The phase selection and the metastable phase formation have been discussed based on the classical nucleation theory. A criterion that contains the relative melting temperature, the relative molar volume of the solid, the relative structure-dependent factor, and the undercooling has been developed to interpret the formation of the metastable tetragonal phase. Received: 12 January 2000 / Accepted: 28 March 2000 / Published online: 13 July 2000  相似文献   

2.
In this study, the internal friction (IF) of a CuAlBe alloy during reverse martensitic transformation (MT) was investigated under isothermal and non-isothermal conditions. It was found that the IF decreases regularly with the aging time in the temperature range of phase transformation. It is thought that this phenomenon is caused by the defect movement. The defects diffuse to the interfaces between martensite and austenite and pin there gradually, thus leading to the IF decrease.  相似文献   

3.
We demonstrate that the Suliciu model is capable to model the hysteresis phenomenon observed experimentally in NiTi shape memory alloy micro-tubes. This model allows a class of stationary phase interfaces. By a series of fully dynamic numerical simulations that mimic quasi-static loading and unloading, the nominal stress-train curve exhibits a big hysteresis loop, which quantitatively agrees with the experimental results.  相似文献   

4.
We report the detailed observation of martensitic variants in NiMnGa single crystals. The variants that are twinned with each other in different ways can be clearly identified in our single crystals by optical observation. We also investigated the preferential orientation of the martensitic variants in NiMnGa single crystals. We observed the motion of the variant boundary in response to application of a magnetic field. This observation can be used to explain phenomenologically the magnetic-field-induced strain. In the single crystal with composition Ni52Mn24Ga24, martensite with seven modulated layers (7M) shows preferentially oriented variants. A completely recoverable two-way shape-memory behavior was also observed by measuring the free sample in three different directions during a complete temperature cycle. It was found that the largest strains in the [001] and [010] directions occur in different temperature ranges.  相似文献   

5.
The temperature dependences of internal friction and modulus were measured for the Fe-Mn-Si-Cr-xN alloys. A stable modulus softening of parent was newly observed to associate with the γ→ε martensitic transformation in the alloys containing certain amount (e.g. >0.086 mass%) of nitrogen, although the rather strong softening has been always recognized to occur during its reverse transformation. The enhanced strength and the increased stacking fault energy of γ matrix by nitrogen alloying are suggested to make contribution to the soft mode.  相似文献   

6.
Ferromagnetic shape memory alloy with nominal composition Co37Ni34Al29 is investigated by transport and magnetic measurements. The anomaly due to the martensitic transition is observed around 130-210 K. The thermal hysteresis, observed due to martensitic transition in the dc magnetization versus temperature data, gets suppressed at higher applied field. Below 50 K, magnetization varies with temperature perfectly as T3/2, which signifies that spin wave excitations are largely responsible for thermal demagnetization. The sample shows small negative magneto-resistance, which varies non-monotonically with temperature showing largest value at around 200 K.  相似文献   

7.
X-ray powder diffraction and magnetization measurements were done on the magnetic shape memory alloys Ni2Mn1+xIn1−x. On the basis of the results, the magnetic phase diagram was determined for Ni2Mn1+xIn1−x alloys. Magnetization measurements make clear that the excess Mn atoms, which substitute for In sites, are coupled ferromagnetically to the ferromagnetic manganese sublattices. A magnetic phase diagram of Ni2Mn1+xIn1−x alloys is discussed qualitatively on the basis of the interatomic dependence of the exchange interactions.  相似文献   

8.
9.
Resonant piezoelectric photoacoustic detection is demonstrated to be a sensitive tool for the determination of phase transitions. A model is presented that describes the changes in the signal expected during phase transitions when resonant detection is used. The technique is applied to the study of first-order martensitic diffusionless transformations in copper-based shape-memory alloys. The model takes into account the signal changes arising from two sources. One behaves like an effective change in the heat capacity, and arises due to the enthalpy of the reaction, and the other can be described as an effective change in the thermal expansion coefficient, and arises from the volume change during the transformation. Due to the relative high frequency used (around 20 kHz), the transformation lags behind the temperature oscillations, yielding a phase shift in the acoustic signal as the transformation temperature is passed. The relative sign of the phase angle and amplitude as the transformation proceeds is an indication as to whether the signal arises from volume changes or heat exchange (enthalpy). Huge signals from very small volume changes (smaller than 0.5%) were observed.  相似文献   

10.
Applying the hypercooling technique, the metastable-phase Fe3B, instead of the stable-phase Fe2B, is formed directly in the bulk Fe-B eutectic alloy melt and can be further preserved at room temperature. Measurement of magnetic properties shows that, for the bulk Fe-B eutectic alloy with Fe3B phase, the intrinsic coercivity and retentivity become smaller, and the saturation magnetization is larger, than the stable eutectic alloy (α-Fe/Fe2B) and some Fe-B amorphous alloys.  相似文献   

11.
This work concerns an in situ study of the isothermal formation of martensite in a stainless steel under the influence of magnetic fields up to 9 T at three different temperatures (213, 233 and 253 K). It is shown that the presence of a constant applied magnetic field promotes the formation of martensite significantly. The activation energy for the nucleation of martensite has been derived using a semi-empirical kinetic model. The experimental results have been analyzed using the Ghosh and Olson model. While this model describes the time and field dependences of the experimental data well, the thermal frictional energy and the defect size values are much lower than those expected from earlier work.  相似文献   

12.
By molecular dynamics simulations we investigate the order-disorder transitions induced in granular media by an applied drive combining vibrations and shear. As the steady state is attained, the pack is found in disordered configurations for comparatively high intensities of the drive; conversely, ordering and packing fractions exceeding the random close packing are found when vibrations and shear are weak. As forcing amplitudes get smaller, we find diverging time scales in the dynamics, as the system enters a jamming region. Under this perspective, our picture supports the intuition that externally applied forcing has, in driven granular media, a role similar to temperature in thermal systems.  相似文献   

13.
Effect of Fe on the martensitic transformation of NbRu high-temperature shape memory alloys is investigated by the experiments and first-principles calculations. The results show that Fe is predicted to occupy Ru sites. The addition of Fe increases the stability of Nb50Ru50-xFex β phase, leading to the significant decrease of the β to β martensitic transformation temperature. In addition, the mechanism of the Fe alloying effect is explained on the basis of the electronic structure.  相似文献   

14.
The hysteresis narrowing and magnetocaloric effect (MCE) were studied in the Ni-Mn-Ga alloys. Ni54Mn24Ga22 and Ni51.9Mn27Ga21.1 were selected in order to obtain specific characteristic temperatures of alloys and to study an influence of several factors on the hysteresis width (δ) of basic austenite-martensite (AM) transformation. The effect of martensite crystal lattice softening due to intermartensitic transition (IT) taking place immediately after AM transformation on δ was examined in alloy 1. MCE was measured in alloy 2, in which Curie temperature (TC) and austenitic start temperature (AS) coincides. It was demonstrated that the hysteresis width δ reaches about 2 K, if IT is enough close to AM transition. MCE was found to have a maximum at TCAS.  相似文献   

15.
A coordinated temperature behavior of magnetic susceptibility and internal friction has been observed in the La2/3Ba1/3MnO3 manganite in the temperature region of the crystal phase separation 5–340 K. Stepwise temperature behavior of the susceptibility of the single crystal sample and corresponding singular behavior of the internal friction in the polycrystalline manganite have been found. These small-scale features of the temperature dependences of the susceptibility and the internal friction are considered to be a reflection of martensitic kinetics of the structural phase transformation R3¯c↔Imma in the 200 K temperature region.  相似文献   

16.
17.
We have used X-ray diffraction, volume magnetocrystalline anisotropy constant and resistance measurements to study solid-state synthesis in Ni(0 0 1)/Fe(0 0 1), Ni/Fe(0 0 1) and Ni/Fe thin films with the atomic ratio between Fe and Ni of 1:1 (1Fe:1Ni), and 3:1 (3Fe:1Ni). We have found that the formation of Ni3Fe and NiFe phases in the 1Fe:1Ni films takes place at temperatures ∼620 and ∼720 K, correspondingly. In the case of the 3Fe:1Ni films the solid-state synthesis starts with Ni3Fe and NiFe phase formation at the same temperatures as for the 1Fe:1Ni films. The increasing of annealing temperature above 820 K leads to the nucleation of a paramagnetic γpar phase at the FeNi/Fe interface. The final products of solid-state synthesis in the Ni(0 0 1)/Fe(0 0 1) thin films are crystallites which consist of the epitaxially intergrown NiFe and γpar phases according to the [1 0 0](0 0 1)NiFe||[1 0 0](0 0 1)γpar orientation relationship. The crystalline perfection and epitaxial growth of the (NiFe+γpar) crystallites on the MgO(0 0 1) surface allow to distinguish (0 0 2)γpar and (0 0 2)NiFe X-ray peaks (the cell parameters are: a(γpar)=0.3600±0.0005 nm and a(NiFe)=0.3578±0.0005 nm, correspondingly). At low temperatures the paramagnetic γpar phase undergoes the martensite γpar→αγparα phase transition which can be hindered by thermal and epitaxial strains and epitaxial clamping with a MgO substrate. On the basis of the studies of the thin-film solid-state synthesis we predict the existence of two novel structural phase transformations at the temperatures of about 720 and 820 K for alloys of the invar region of the Fe–Ni system.  相似文献   

18.
The crystal field in the orientationally disordered phase of C90-fullerite is derived from an intermolecular potential model, which takes into account the geometric difference between double bonds and single bonds. The molecules are modelled as rigid bodies, atoms and single bonds are treated as single interaction centers, while double bonds are described by a distribution of interaction centers along the bond. The crystal field is expanded in terms of cubic rotator functions. The calculated expansion coefficients are compared with empirical values derived from diffraction data. The angular dependence of the crystal field, resulting from an anticlockwise rotation of the molecule around the [111] axis, exhibits an absolute and a secondary minimum at angles of 98° and 38° respectively. The self interaction of the molecule in a deformable lattice is investigated.  相似文献   

19.
The Biham-Middleton-Levine (BML) model is simple lattice model of traffic flow, self-organization and jamming. Rather than a sharp phase transition between free-flow and jammed, it was recently shown that there is a region where stable intermediate states exist, with details dependent on the aspect ratio of the underlying lattice. Here we investigate square aspect ratios, focusing on the region where random, disordered intermediate (DI) states and conventional global jam (GJ) states coexist, and show that DI states dominate for some densities and timescales. Moreover, we show that periodic intermediate (PI) states can also coexist. PI states converge to periodic limit cycles with short recurrence times and were previously conjectured to arise from idiosyncrasies of relatively prime aspect ratios. The observed coexistence of DI, PI and GJ states shows that global parameters, density together with aspect ratio, are not sufficient to determine the full jamming outcome. We investigate additional features that lead towards jamming and show that a strategic perturbation of a few selected bits can change the nature of the flow, nucleating a global jam.  相似文献   

20.
Phase evolution of an aluminized steel by oxidation treatment   总被引:3,自引:0,他引:3  
Effects of temperature and time on the microstructure and phase evolution for different thermal treatments were investigated with respect to the measurement of intermetallic layer thickness, phase identification and microhardness distribution in the aluminized zone of a steel substrate. The intermetallic phases present in the aluminized region after hot dip aluminizing is mainly Fe2Al5. The thickness of the intermetallic layers increases with increasing oxidation temperature and time. In the oxidation treatments of the aluminized steel in air, the initial Fe2Al5 phase remains at the temperature below 950 °C in 2-h, and the Fe2Al5 phase is completely transformed into low iron content Fe-Al intermetallics due to oxidation at 950 °C for 4 h. However, the Fe2Al5 phase remains in the outer layer of the aluminized samples diffusion-treated in vacuum regardless of diffusion time. The microhardness values of the Al2O3 and the intermetallic Fe2Al5, FeAl2, FeAl and Fe3Al phases are HV1150, HV1010, HV810, HV650 and HV320, respectively. The oxide layer formed on the steel substrate has an extremely fast adherence to the steel substrate and excellent properties of thermal shock resistance, high temperature oxidation resistance and anti-liquid aluminum corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号