首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the results of the investigation of the specific heat of the ferromagnetic Heusler Ni2MnSn, Ni2MnSb, NiMnSb and antiferromagnetic CuMnSb alloys. The low-temperature behaviour of the specific heat may be described as C=γT+βT3 for ferromagnetic compounds and as C=γT+δ T2+βT3 for antiferromagnetic CuMnSb. The values of the density of states from the heat capacity measurements are higher than those from electronic band structure calculations. Debye temperatures are in a good agreement with those obtained from thermal expansion measurements. The Grüneisen parameter is calculated for Ni2MnSn and CuMnSb from the magnetic contribution to the specific heat in the vicinity of TC or TN.  相似文献   

2.
The electronic structure of Sr2CuMn2As2O2 and Sr2CuFe2As2O2 are studied by the first-principle calculations. These compounds have a body-centered-tetragonal crystal structure that consists of the CuO2 layers similar to those in the high-Tc cuprate superconductor, and intermetallic MAs (M = Mn, or Fe) layers similar to the FeAs layers in high-Tc pnictides. Such special structure makes them as interesting candidates for new type of superconductor since they have two types of superconducting layers. However, our calculations indicate that the states in the range from −2.0 eV to +2.0 eV are dominated by Mn-3d or Fe-3d states, while the states of Cu-3d are far away from the Fermi level (in the range from −3.0 eV to −1.0 eV). Such results are significantly different with the Cu-based superconductor, like La2CuO4, where the states around Fermi level are dominated by Cu-3d states. Besides, we find that the mean-field magnetic ground state is the checkerboard antiferromagnetic in Cu sublattice and the stripe antiferromagnetic in Fe (or Mn) sublattice.  相似文献   

3.
The electronic structure and magnetic properties of new layered oxyselenide compounds La2O3Fe2Se2 and La2O3Co2Se2 are studied by first-principles calculations. Our results indicate that both compounds are Mott-insulators with orbital ordering. The ground states of both compounds are the checkerboard antiferromagnetic states, which are different from the iron pnictide superconductors, although their structures are similar to those of the Fe-As-based superconductors.  相似文献   

4.
The heat capacity of the Y3Ni13−xCoxB2 series has been measured from 300 mK to RT. The magnetic ordering phase transitions have been characterized as second-order type and the Tc's determined. The electronic contribution to the low-temperature heat capacity for x=0 yields an electronic constant γ=54 mJ mol K2, which is higher than those of YNi5 and YNi4B, proving experimentally that its density of states at the Fermi surface is larger than in those other compounds. The substitution of Ni by Co increases γ linearly. Electronic band calculations could explain these features.  相似文献   

5.
Antiferromagnetic phase transition in two vanadium garnets AgCa2Co2V3O12 and AgCa2Ni2V3O12 has been found and investigated extensively. The heat capacity exhibits sharp peak due to the antiferromagnetic order with the Néel temperature TN=6.39 K for AgCa2Co2V3O12 and 7.21 K for AgCa2Ni2V3O12, respectively. The magnetic susceptibilities exhibit broad maximum, and these TN correspond to the inflection points of the magnetic susceptibility χ a little lower than T(χmax). The magnetic entropy changes from zero to 20 K per mol Co2+ and Ni2+ ions are 5.31 J K−1 mol-Co2+-ion−1 and 6.85 J K−1 mol-Ni2+-ion−1, indicating S=1/2 for Co2+ ion and S=1 for Ni2+ ion. The magnetic susceptibility of AgCa2Ni2V3O12 shows the Curie-Weiss behavior between 20 and 350 K with the effective magnetic moment μeff=3.23 μB Ni2+-ion−1 and the Weiss constant θ=−16.4 K (antiferromagnetic sign). Nevertheless, the simple Curie-Weiss law cannot be applicable for AgCa2Co2V3O12. The complex temperature dependence of magnetic susceptibility has been interpreted within the framework of Tanabe-Sugano energy diagram, which is analyzed on the basis of crystalline electric field. The ground state is the spin doublet state 2E(t26e) and the first excited state is spin quartet state 4T1(t25e2) which locates extremely close to the ground state. The low spin state S=1/2 for Co2+ ion is verified experimentally at least below 20 K which is in agreement with the result of the heat capacity.  相似文献   

6.
The ab initio FLAPW-GGA calculations of the band structure of a new layered low-temperature (T C ~ 2.2 K) La3Ni4P4O2 superconductor are presented. The energy bands, distributions of the densities of electron states, charge states of the atomic layers, low-temperature electron specific heat, and molar Pauli paramagnetic susceptibility for La3Ni4P4O2 have been determined. They are discussed compared to the existing experimental data.  相似文献   

7.
Metastable ferromagnetic phases, for different compositions in La2MnCo1−xNixO6, are obtained for samples synthesized by a low-temperature method and annealed in air at different temperatures in the range 200-1350 °C. The Tcs of the ferromagnetic phases vary linearly between those of the phases of the end members. Tcs of the different phases of La2MnCo1−xNixO6 can be predicted based on the Tcs and spin states of Mn, Co and Ni in the different phases of the end members, La2MnCoO6 and La2MnNiO6.  相似文献   

8.
The structural and electronic properties of Y 2C3 superconductor under different external pressures were calculated by employing the first-principles method. This shows that the lattice constants as well as the lengths of C-C dimers decrease with the pressure. Results of band structure calculations indicate that the Fermi level advances to the bonding zone with an increase in pressure; meantime, the valence and conduction bands intersect more deeply with the Fermi level. Moreover, the Fermi level is found to shift from the valley bottom of the density of states (DOS) curve to the shoulder, which means an increase in N(EF), and therefore the critical temperature, Tc. The calculations verify that the critical temperature is directly related to the electronic structure.  相似文献   

9.
The ternary germanide Ce3Ni2Ge7 has been studied by means of neutron powder diffraction and Ce LIII X-ray absorption (XAS). This compound which orders antiferromagnetically below TN=7.2(2) K, crystallizes in the orthorhombic (Cmmm space group) La3Co2Sn7-type structure where Ce atoms occupying two inequivalent crystallographic sites: Ce1 at 2d site and Ce2 at 4i site. Below TN, the antiferromagnetic structure of Ce3Ni2Ge7 is collinear but only the Ce2 atoms carry a magnetic moment (1.98(2) μB at 1.4 K). The absence of ordered magnetic moment on Ce1 atoms can be correlated to the average valence v=3.03(1), determined by X-ray absorption spectroscopy, suggesting an intermediate valence state of cerium in the 2d site.  相似文献   

10.
The magnetic, transport and structural properties are studied for La0.83Sr0.17MnO3 and La0.82Sr0.18CoO3 single crystals with nearly the same doping and the metallic ground state. Their comparisons have shown that ferromagnetic clusters originate in the paramagnetic matrix below Т?>TC in both samples and exhibit similar properties. This suggests the possible universality of such phenomena in doped mixed-valence oxides of transition metals with the perovskite-type structure. The cluster density increases on cooling and plays an important role on the physical properties of these systems. The differences in cluster evolutions and scenarios of their insulator–metal transitions are related to different magnetic behaviors of the matrixes in these crystals that is mainly due to distinct spin states of the Mn3+ and Co3+ ions.  相似文献   

11.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

12.
We report here the structural, magnetotransport and morphological studies of Sb-doped La2/3Ba1/3Mn1−xSbxO3 perovskite manganites. Pristine material La2/3Ba1/3MnO3 (LBMO) shows two insulator-metal (I-M) transitions in the electrical resistivity-temperature (ρ-T) behavior. While the higher temperature transition (TP1) at ∼340 K is reminiscent of the usual I-M transition in manganites, the lower temperature transition (TP2) at ∼250 K has been ascribed to the grain boundary (GB) effects arising out of the ionic size mismatch between the ions present at the rare-earth site (La3+ and Ba2+). With Sb-doping TP1 shifts to lower temperatures while TP2 remains invariant up to 3% and shifts to lower temperature for 5%. Room temperature electrical resistivity and the peak values also increase successively with Sb-doping. Scanning electron micrographs of the samples exhibit a gradual increase in their grain sizes with Sb indicating a gradual decrease in the GB density. Shift of TP1 with doping is explained on the basis of a competition between double-exchange and super-exchange mechanisms. The overall electrical resistivity increases and the shift in the electrical resistivity hump (TP2) with Sb-doping is found related to be gradually decreasing GB density and the ensuing lattice strain increase at the GBs. The intrinsic magnetoresistance (MR) gets suppressed and extrinsic MR gets enhanced with Sb-doping. At T>TP1, the electrical resistivity is found to follow the adiabatic polaron hopping model whereas the electron-magnon scattering is found to dominate in the metallic regime (T<TP1).  相似文献   

13.
Magnetic and structural behaviour and phase relationships of materials of composition R3Ni7B2 (R = Nd-Lu) were investigated. Detailed X-ray analysis yields that two hexagonal structures are encountered. For the heavy rare earth (Gd-Lu) the compounds crystallize in the CeNi3 structure. The space group is P63/mmc and each unit cell contains two formula units. The R3Ni7B2 where R = Nd-Sm (including Yb3Ni7B2) crystallize in the CeCo4B structure. The space group is P6/mmm and each unit cell contains one formula unit. The detailed crystal structures are discussed. The magnetic measurements show that Yb3Ni7B2 and Lu3Ni7B2 are Pauli paramagnetic. Sm3Ni7B2 is ferromagnetically ordered with a huge intrinsic magnetic hardness. The magnetization at the coercive field at low temperatures is extremely time dependent. The R3Ni7B2 which crystallize in CeNi3 structure are antiferromagnetic at low temperatures. All Mossbauer and magnetization experimental results can be explained assuming an antiferromagnetic exchange interaction in both 2(c) and 4(f) crystallographic sites and a ferromagnetic interaction between these sites.  相似文献   

14.
15.
The magnetic susceptibility and the heat capacity of a layered manganese compound Mn(NH3)2Ni(CN)42C12H10 have been measured down to the antiferromagnetic ordered state. A similar symmetric logarithmic singularity in the heat capacity is found for the isomorphic nickel compound Ni(NH3)2Ni(CN)42C12H10 has been observed at TN = 0.172 K.  相似文献   

16.
While it was recently found that La2VTcO6 and La2VCuO6 are promising candidates for half-metallic antiferromagnets (HM-AFM), the search continues for other potential candidates of HM-AFM in the double perovskites structure La2BBO6 (B, B′=transition metal). La2VReO6 is found to be a nearly HM-AFM. Furthermore, considering correlation and spin-orbital coupling (SOC) effects in transition metals, it is still nearly a HM-AFM after generalized gradient approximation with correction of on-site Coulomb interaction and SOC calculations, as reported herein.  相似文献   

17.
Glasses with compositions 70B2O3-30Bi2O3 and 70B2O3-30PbO have been prepared and studied by differential thermal analysis (DTA). The crystallization kinetics of the glasses were investigated under non-isothermal conditions. From the dependence of glass-transition temperature (Tg) on heating rate, the activation energy for the glass transition was derived. Similarly the activation energy of the crystallization process was determined. Thermal stability of these glasses were achieved in terms of the characteristic temperatures, such as glass-transition temperature, Tg, onset temperature of crystallization, Tin, temperature corresponding to the maximum crystallization rate, Tp, beside the kinetic parameters, K(Tg) and K(Tp). The results revealed that 70B2O3-30PbO is more stable than 70B2O3-30Bi2O3. The crystallization mechanism is characterized for both 70B2O3-30Bi2O3 and 70B2O3-30PbO glasses (kinetic exponent n=2.06 for 70B2O3-30Bi2O3, and n=3.03 for 70B2O3-30PbO). The phases at which the glass crystallizes after the thermal process were identified by X-ray diffraction.  相似文献   

18.
The investigation of the manganites La2/3−xPrxSr1/3MnO3, La2/3Sr1/3−xCaxMnO3 and La2/3+xCa1/3−2xAgxMnO3, which all exhibit Mn3+:Mn4+=2, shows that it is possible to reach high magnetoresistance at room temperature, up to 21% under 1.2 T. These materials are compared to La5/6Ag1/6MnO3 which corresponds to the same Mn3+:Mn4+ ratio and exhibits a magnetoresistance of 25% in this field. An interesting feature deals with the value of the insulator-metal transition temperature TIM, often higher than TC, especially for Ag-based compounds. It is suggested that the latter results either from a better oxygenation of the surface of the grains or from a migration of silver toward the surface.  相似文献   

19.
Visible photoluminescence and its temperature dependence of La2/3Ca1/3MnO3 in the temperature range 138-293 K were measured. It was observed that the main broad band centered at ∼1.77 eV with the shoulders at ∼1.57 and ∼1.90 eV existed in the entire temperature range. It can be well fitted by three Gaussian curves B1, B2 and B3 centered at ∼1.52, ∼1.75 and ∼1.92 eV, respectively. The intensities of the peak B1 and B2 vary as temperature increases. In the entire temperature range, the intensity of B1 increases with increasing temperature, whereas that of B2 decreases. The photoluminescence mechanisms for La2/3Ca1/3MnO3 are presented based on the electronic structures formed by the interactions among spin, charge and lattice, in which B1 was identified with the charge transfer excitation of an electron from the lower Jahn-Teller split eg level of a Mn3+ ion to the eg level of an adjacent Mn4+ ion, B2 is assigned to the transition between the spin up and spin down eg bands separated by Hund's coupling energy EJ and B3 is attributed to the transition, determined by the crystal field energy EC, between a t2g core electron of Mn3+ to the spin up eg bands of Mn4+ by a dipole allowed charge transfer process.  相似文献   

20.
Magnetic susceptibility, specific heat and 133Cs magnetic resonance measurements in a single crystal of CsNiBr3 are reported. The data reveal two magnetic transitions separating the paramagnetic phase from the antiferromagnetic ground state. At the higher transition temperature TN2 = (14.25 ± 0.05)K a net magnetic moment is observed only along the hexagonal c-axis, while only below the lower transition temperature TN1 = (11.75 ± 0.05)K a perpendicular component of the magnetic moment appears also. Above TN2 CsNiBr3 can be described as a one-dimensional antiferromagnet with intrachain exchange interaction JkB = ?(17.0 ± 0.2)K and single-ion anisotropy constant DkB ? ?1.5K. Below TN1, the data are consistent with the non-colinear triangular structure of the Ni2+ moments proposed previously for the isomorphic crystal CsNiCl3. A reduced value of the zero-temperature susceptibility over the classical value is found and atrributed to the zero point deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号