首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of nucleoside derivatives has paramount importance because they are the essential biomolecular units for all life. Herein, we report a host-guest approach by using a fluorescent tetraphenylethenebased octacationic cage as host and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt(HPTS) as guest and fluorescent indicator to form non-fluorescent 1:1:1 host-(endo-exo)guest complex in water. This new host-(endo-exo)guest complex can be successfully used for detecting nucleosides(e.g., ...  相似文献   

2.
Zhang H  Yeung ES 《Electrophoresis》2006,27(18):3609-3618
Direct detection of separated proteins inside polyacrylamide gels has many advantages compared to staining methods. Ultrasensitive native fluorescence detection of proteins with miniaturized 1-D and 2-D PAGE was achieved with laser side-entry excitation. The detection limit for R-phycoerythrin protein spots in 1-D SDS-PAGE with 532 nm excitation was as low as 15 fg, which corresponds to only 40,000 molecules. The average detection limit of six standard native proteins was 5 pg per band with 275 nm excitation. The dynamic range spanned more than three orders of magnitude. By using the same detection setup, approximately 150 protein spots from 30 ng of total Escherichia coli extraction were detected on a 0.8 cm x 1 cm gel in 2-D separation. The significant improvement in sensitivity for laser side-entry excitation comes from higher excitation power and lower background level compared with other excitation modes.  相似文献   

3.
Single cell analytics is a key method in the framework of proteom research allowing analyses, which are not subjected to ensemble-averaging, cell-cycle or heterogeneous cell-population effects. Our previous studies on single cell analysis in poly(dimethylsiloxane) microfluidic devices with native label-free laser induced fluorescence detection [W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, D. Anselmetti, Electrophoresis 26 (2005) 3689] were extended in order to improve separation efficiency and detection sensitivity. Here, we particularly focus on the influence of poly(oxyethylene) based coatings on the separation performance. In addition, the influence on background fluorescence is studied by the variation of the incident laser power as well as the adaptation of the confocal volume to the microfluidic channel dimensions. Last but not least, the use of carbon black particles further enhanced the detection limit to 25 nM, thereby reaching the relevant concentration ranges necessary for the label-free detection of low abundant proteins in single cells. On the basis of these results, we demonstrate the first electropherogram from an individual Spodoptera frugiperda (Sf9) cell with native label-free UV-LIF detection in a microfluidic chip.  相似文献   

4.
以发射波长473nm的半导体激光泵浦固体激光器(LD DPSSL)为激发光源,研制了一种小型模块化激光诱导荧光检测器。以异硫氰酸荧光素(FITC)为荧光探针,毛细管电泳柱上检测(0.05mmi.d)评价了该体系,得到了5×10-12mol L的浓度检出限。利用该系统考察了氨基酸、实际样品中B族维生素的检测。  相似文献   

5.
A blue (452 nm) frequency-doubled diode laser with a quasi-cw optical output power of 10 microW is used for indirect laser-induced fluorescence detection in combination with the capillary electrophoretic separation of inorganic anions. As fluorescing probe ion the anion of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) was selected having an absorption maximum of 454 nm in alkaline medium. Employing a capillary coated with linear acrylamide, baseline separation of eight inorganic anions was possible within 5 min. With a separation buffer containing 50 micromol.L(-1) HPTS and 10 mmol.L(-1) lysine the limits of detection for sulfate, nitrite, nitrate, azide, thiocyanate, and chlorate were between 0.9 and 4.7 micromol.L(-1). Separation of chloride and sulfate was achieved by adding 0.25 mmol.L(-1) calcium hydroxide to the separation buffer. Inorganic anions in several mineral and tap water samples have been determined with the technique developed and results are compared to data obtained by ion chromatography in combination with conductivity detection after conductivity suppression.  相似文献   

6.
The potential of a recently developed lamp-based fluorescence detector for the analysis of underivatised proteins by capillary electrophoresis (CE) was investigated. Fluorescence detection (Flu) was achieved using optical light guides to deliver excitation light from a Xenon–Mercury lamp to the capillary detection window and to collect fluorescence emission and lead it to a photomultiplier. The performance of the detector was evaluated by monitoring the native fluorescence of the amino acid tryptophan and the proteins α-chymotrypsinogen A, carbonic anhydrase II, lysozyme and trypsinogen upon excitation at 280 nm. The test compounds were analysed using background electrolytes (BGEs) of sodium phosphate at pH 3.0 and 11.3. The results were compared to experiments of CE with UV absorbance detection. For tryptophan, a linear fluorescence response was obtained with a dynamic range of over 4 orders of magnitude, and a limit of detection (LOD) of 6.7 nM. This LOD was a factor of 200 more favourable than UV detection at 280 nm, and a factor of 20 better than detection at low-UV wavelengths. All tested proteins showed linear fluorescence responses up to 250 μg/mL. LODs were typically in the 10–20 nM range. These LODs were a factor of 25 lower than for UV detection at 280 nm, and comparable to UV detection at low-UV wavelengths. Overall, Flu yields much more stable baselines, especially with a BGE of high pH. The applicability of CE–Flu is demonstrated by the analysis of a degraded protein mixture, and of an expired formulation of the protein drug human growth hormone, indicating that protein degradation products can be selectively detected.  相似文献   

7.
Methylmercury σ-complexation to 1-alkynes is exploited in a new practical and sensitive quantitation of monomethylmercury in water and in biological tissues; indeed, methylmercury halides are detected at the nanomolar level by 10-(3-trimethylsilyl-2-propynyl)-9-(10H)-acridinone, in dichloromethane and in the presence of Bu4NF · 3H2O.  相似文献   

8.
We provide an overview of powerful applications of chemiluminescence (CL) analysis for biomolecules, mainly in gel electrophoresis. In routine immunoassays, CL labels and detection reactions are widely used for peroxidase and alkaline-phosphatase enzymes. The sensitivity, the dynamic range and the diversity of CL assays have led to a vast range of applications, notably in protein and nucleic-acid blotting. Non-enzymatic CL detection is also being developed gradually.Direct CL detection of biomolecules in gels has emerged recently, with simple, convenient and rapid methods. It offers substantial potential to detect many proteins or nucleic acids in complex biological samples. In addition, metallic nanoparticles and catalytic nucleic acids are also potential candidates for CL detection of biomolecules in the future.  相似文献   

9.
Laser induced fluorescence has produced outstanding detection limits in liquid phase analysis. This paper presents a general method for optimizing detection limits as a function of sample volume.  相似文献   

10.
Sluszny C  He Y  Yeung ES 《Electrophoresis》2005,26(21):4197-4203
A continuous-wave 280 nm light-emitting diode (LED) was used as the excitation source for native fluorescence detection of proteins in CE. The operating current and temperature of the LED were optimized in order to achieve high luminescence power. It was found that a forward current of 30 mA and a temperature of approximately 5 degrees C gave the best S/N. By using a set of two ball lenses to focus light from the LED, we achieved a spot of approximately 200 mum with a power of 0.1-0.2 mW on the detection window. Fluorescence was collected with a ball lens at 90 degrees angle through a bandpass filter onto a photomultiplier tube. In CZE an LOD of 20 nM for conalbumin was reached. In capillary gel electrophoresis all eight proteins from a commercial standard kit were detected with high S/N. For a 10 microg/mL total protein mixture, S/N was better than 3 for all proteins in solution. Further improvement in LOD should be possible on utilization of an LED with higher luminescence power.  相似文献   

11.
Affinity probe capillary isoelectric focusing (CIEF) with laser-induced fluorescence was explored for detection of Ras-like G proteins. In the assay, a fluorescent BODIPY FL GTP analogue (BGTPgammaS) and G protein were incubated resulting in formation of BGTPgammaS-G protein complex. Excess BGTPgammaS was separated from BGTPgammaS-G protein complex by CIEF using a 3-10 pH gradient and detected in whole-column imaging mode. In other cases, a single point detector was used to detect zones during the focusing step of CIEF using a 2.5-5 pH gradient. In this case, analyte peaks passed the detector in approximately 5 min at an electric field of 350 V/cm. Detection during focusing allowed for more reproducible assays at shorter times but with a sacrifice in sensitivity compared to detection during mobilization. Resolution was adequate to separate BGTPgammaS-Ras and BGTPgammaS-Rab3A complexes. Formation of specific complexes was confirmed by adding GTPgammaS to samples containing BGTPgammaS-G protein. GTPgammaS competed with BGTPgammaS for G protein binding sites resulting in decreased BGTPgammaS-G protein peak heights. The concentrating effect of CIEF enabled detection limits of 30 pM.  相似文献   

12.
Human DNA is exposed to a variety of endogenous and environmental agents that may induce a wide range of damage. The critical role of DNA damage in cancer development makes it essential to develop highly sensitive and specific assays for DNA lesions. We describe here ultrasensitive assays for DNA damage, which incorporate immuno-affinity with capillary electrophoresis (CE) separation and laser induced fluorescence (LIF) detection. Both competitive and non-competitive assays using CE/LIF were developed for the determination of DNA adducts of benzo[a]pyrene diol epoxide (BPDE). A fluorescently labeled oligonucleotide containing a single BPDE adduct was synthesized and used as a fluorescent probe for competitive assay. Binding between this synthetic oligonucleotide and a monoclonal antibody (MAb) showed both 1:1 and 1:2 complexes between the MAb and the oligonucleotide. The 1:1 and 1:2 complexes were separated by CE and detected with LIF, revealing binding stoichiometry information consistent with the bidentate nature of the immunoglobulin G antibody. For non-competitive assay, a fluorescently labeled secondary antibody fragment F(ab′)2 was used as an affinity probe to recognize a primary antibody that was specific for the BPDE-DNA adducts. The ternary complex of BPDE-DNA adducts with the bound antibodies was separated from the unbound antibodies using CE and detected with LIF for quantitation of the DNA adducts. The assay was used for the determination of trace levels of BPDE-DNA adducts in human cells. Analysis of cellular DNA from A549 human lung carcinoma cells that were incubated with low doses of BPDE (32 nM–1 μM) showed a clear dose–response relationship. BPDE is a potent environmental carcinogen, and the ultrasensitive assays for BPDE-DNA adducts are potentially useful for monitoring human exposure to this carcinogen and for studying cellular repair of DNA damage.  相似文献   

13.
A highly sensitive laser-induced (LIF) detection scheme for native, tryptophan- or tyrosine-containing proteins in capillary electrophoresis (CE) has been demonstrated. The 275.4 nm line from an argon-ion laser is used to excite native protein fluorescence. A limit of detection (LOD) (S/N = 2) of 1 x 10(-10) M for conalbumin represents a 140-fold improvement over earlier reports. With stacking at injection, the LOD is 3 x 10(-12) M. Linear dynamic ranges of at least 5 and 4 orders of magnitude for, respectively, tryptophan and bovine serum albumin are found. The practical performance and blueprint of an easily constructed, rugged, compact and user-friendly LIF detector for CE are shown.  相似文献   

14.
The potential of CE with native fluorescence detection (Flu) for the profiling of the therapeutic protein erythropoietin (EPO) was studied. EPO is a highly heterogeneous glycoprotein comprising a large number of isoforms. CE was applied to induce separation among the various glycoforms. Native Flu of EPO provided high detection selectivity yielding good signal‐to‐noise ratios and stable baselines, particularly when compared to conventional UV absorbance detection. In order to enhance EPO isoform resolution, CE was performed using a capillary with a neutral coating in combination with a simple BGE of 2.0 M acetic acid (pH 2.1). CE‐Flu analysis of the EPO biological reference preparation of the European Pharmacopeia resulted in a highly detailed glycoform profile. Migration time RSDs for selected EPO isoforms were less than 0.22% and 0.80% for intraday and interday repeatability, respectively. RSDs for relative peak intensity of the major EPO isoforms were less than 3%. The achieved resolution, migration time stability, and sensitivity allowed discrimination of different EPO products (EPO‐α and EPO‐β) based on the recorded glycoform pattern. The developed CE‐Flu method is relatively straightforward, and shows potential for quality control in biopharmaceutical production.  相似文献   

15.
Single-cell measurements allow a unique glimpse into cell-to-cell heterogeneity; even small changes in selected cells can have a profound impact on an organism's physiology. Here an integrated approach to single-cell chemical sampling and assay are described. Capillary electrophoresis (CE) with laser-induced native fluorescence (LINF) has the sensitivity to characterize natively fluorescent indoles and catechols within individual cells. While the separation and detection approaches are well established, the sampling and injection of individually selected cells requires new approaches. We describe an optimized system that interfaces a single-beam optical trap with CE and multichannel LINF detection. A cell is localized within the trap and then the capillary inlet is positioned near the cell using a computer-controlled micromanipulator. Hydrodynamic injection allows cell lysis to occur within the capillary inlet, followed by the CE separation and LINF detection. The use of multiple emission wavelengths allows improved analyte identification based on differences in analyte fluorescence emission profiles and migration time. The system enables injections of individual rat pinealocytes and quantification of their endogenous indoles, including serotonin, N-acetyl-serotonin, 5-hydroxyindole-3-acetic acid, tryptophol and others. The amounts detected in individual cells incubated in 5-hydroxytryptophan ranged from 10(-14) mol to 10(-16) mol, an order of magnitude higher than observed in untreated pinealocytes.  相似文献   

16.
We report a novel plastic biochip for the sensitive colorimetric detection of analytes of interest. This type of biochip is designed to perform bioassays in a sandwich format, i.e., employing the immobilized probe molecules to capture target and then utilizing gold nanoparticle (AuNP)-labeled reporters to screen the biorecognition events. To fabricate and implement such plastic biochips, not only have we demonstrated the probe immobilization, sensor unit formation, signal transduction and visualization on the plastic substrate, but we have also introduced new methods for imaging and analysis of them. As two proof-of-concept detection applications, plastic immunochips and DNA biochips have been fabricated and their responses to human IgG and DNA have been examined respectively. To further assess the detection sensitivity of the colorimetric-based biochip, we have compared it with an enzyme-catalyzed-based biochip and with a conventional fluorescent-based biochip. We believe the colorimetric-based plastic biochip presented herein is able to fully combine the advantage of colorimetric detection and plastic substrate, thus making it an ideal platform for point-of-care analysis and diagnostics.  相似文献   

17.
Two photon excited (TPE) fluorescence detection was applied to native fluorescence detection of aromatics in microchip electrophoresis (MCE). This technique was evaluated as an alternative to common one photon excitation in the deep UV spectral range. TPE enables fluorescence detection of unlabeled aromatic compounds, even in non-deep UV-transparent microfluidic chips. In this study, we demonstrate the proof of concept of native TPE fluorescence detection of small aromatics in commercial microfluidic glass chips. Label-free TPE fluorescence detection of native proteins and small aromatics in MCE was achieved within the micromolar concentration range, utilising 420 nm excitation light.  相似文献   

18.
Laser-induced fluorescence (LIF) detection in conventional-size column liquid chromatography is achieved at 257 nm with a frequency-doubled argon-ion laser. Short-wavelength excitation offers two important advantages: firstly, a wide variety of analytes can be excited, and secondly, the Raman scatter of the eluent does not interfere with the fluorescence of the analytes. A standard mixture of polynuclear aromatic hydrocarbons was studied, both with LIF detection and with a commercially available sensitive conventional fluorescence detector. The improvement in the detection limits ranges from about a factory of 4 to 30; the LIF detection limits are typically at the 50 ng l?1 level, which corresponds to an injected amount of 0.5 pg.  相似文献   

19.
A laser-induced native fluorescence detection system optimized for analysis of indolamines and catecholamines by capillary electrophoresis is described. A hollow-cathode metal vapor laser emitting at 224 nm is used for fluorescence excitation, and the emitted fluorescence is spectrally distributed by a series of dichroic beam-splitters into three wavelength channels: 250–310 nm, 310–400 nm, and >400 nm. A separate photomultiplier tube is used for detection of the fluorescence in each of the three wavelength ranges. The instrument provides more information than a single-channel system, without the complexity associfated with a spectrograph/charge-coupled device-based detector. With this instrument, analytes can be separated and identified not only on the basis of their electrophoretic migration time but also on the basis of their multichannel signature, which consists of the ratios of relative fluorescence intensities detected in each wavelength channel. The 224-nm excitation channel resulted in a detection limit of 40 nmol L−1 for dopamine. The utility of this instrument for single-cell analysis was demonstrated by the detection and identification of the neurotransmitters in serotonergic LPeD1 and dopaminergic RPeD1 neurons, isolated from the central nervous system of the well-established neurobiological model Lymnaea stagnalis. Not only can this system detect neurotransmitters in these individual neurons with S/N>50, but analyte identity is confirmed on the basis of spectral characteristics. Lapainis and Scanlan contributed equally to this work.  相似文献   

20.
Capillary electrophoresis is known for its compatibility with biological materials and with small samples. It is an ideal tool for the study of single biological cells. Either whole cells or the material secreted from cells can be quantified. By continuously flowing a chemical stimulant over an immobilized cell inside the entrance of the capillary, one can even record the temporal progression of cellular secretion with sub-second resolution. The use of native fluorescence detection in such experiments provides a sensitive, rapid, non-intrusive and quantitative probe of important biomolecules such as catecholamines and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号