共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhi-ming Zhou Dao-yuan ZhaoJing Wang Wei-jun ZhaoMing-min Yang 《Journal of chromatography. A》2009,1216(1):30-35
Isoniazid (INH) reacted with p-dimethylaminobenzaldehyde (DABD) in the presence of trichloroacetic acid to give isonicotinylhydrazone (INZ) having λmax 365 nm. Cloud point extraction (CPE) is carried out to extract INH and IHZ in aqueous solutions using surfactant poly(ethylene glycol) 4000 (PEG4000), respectively. Langmuir model is used to study the adsorption behaviors of the two solutes on micelles of PEG4000. A linear correlation is found between variation of PEG4000 concentration required for feed concentration of the two solutes and used to predict PEG4000 concentration required for extracting INH and IHZ in CPE procedure. The results calculated show that, for a desired recovery level of 90%, only can IHZ be sufficiently extracted by PEG4000. In this experiment, the feed concentration of PEG4000 is defined by above-mentioned correlation, and the effects of other operating parameters, e.g., concentration of salt, pH and centrifugation time on extraction of PEG4000-IHZ system have also been studied in detail. The proposed CPE method coupled with HPLC-UV system is successfully used for the determination of INH in urine sample. 相似文献
2.
Yamaki RT Nunes LS de Oliveira HR Araújo AS Bezerra MA Lemos VA 《Journal of AOAC International》2011,94(4):1304-1309
The synthesis and characterization of the reagent 2-(5-bromothiazolylazo)-4-chlorophenol and its application in the development of a preconcentration procedure for cobalt determination using flame atomic absorption spectrometry after cloud point extraction is presented. This procedure is based on cobalt complexing and entrapment of the metal chelates into micelles of a surfactant-rich phase of Triton X-114. The preconcentration procedure was optimized by using a response surface methodology through the application of the Box-Behnken matrix. Under optimum conditions, the procedure determined the presence of cobalt with an LOD of 2.8 microg/L and LOQ of 9.3 microg/L. The enrichment factor obtained was 25. The precision was evaluated as the RSD, which was 5.5% for 10 microg/L cobalt and 6.9% for 30 microg/L. The accuracy of the procedure was assessed by comparing the results with those found using inductively coupled plasma-optical emission spectrometry. After validation, the procedure was applied to the determination of cobalt in pharmaceutical preparation samples containing cobalamin (vitamin B12). 相似文献
3.
The feasibility of utilizing a zwitterionic surfactant, 3-(nonyldimethylammonio)propylsulfate, or nonionic surfactant, Triton X-114, mediated phase separation in conjunction with affinity ligands was studied for hydrophilic protein extractions. Below (or above) its critical temperature (so-called cloud point), aqueous solutions of zwitterionic (or nonionic) surfactants separate into two immiscible phases, a surfactant-rich phase and an aqueous phase. Avidin was successfully extracted into the zwitterionic surfactant-rich phase when a small amount of the affinity ligand, N- biotinoyl)dipalmitoyl- l -alpha- phosphatidyl ethanolamine, was added to the system. It was not possible to extract hexokinase into the surfactant-rich phase of the nonionic surfactant, Triton X-114, even if a considerable amount of octyl-beta-d-glucoside was added to the solution as an affinity ligand. In contrast, the use of the zwitterionic surfactant and octyl-beta-d-glucoside as an affinity ligand proved to be effective for the extraction of hexokinase. The hexokinase extraction efficiency was found to depend upon the solution pH and the concentration of the affinity ligand in the system. The results clearly indicate that hydrophilic proteins can be successfully extracted with surfactant mediated phase separations (cloud point extractions) via use of the zwitterionic surfactant, 3-(nonyldimethylammonio)propylsulfate, and appropriate affinity ligands. Some advantages of zwitterionic surfactants in such extractive processes relative to that of nonionic surfactants are delineated. 相似文献
4.
A new approach, employing cloud point extraction (CPE) in combination with thermal lens spectrometry (TLS), has been developed for the determination of cobalt. The CPE and TLS methods have good matching conditions for combination because TLS is suitable for low volume samples obtained after CPE and for organic solvents, which are used for dissolving the remaining analyte phase.1-(2-Pyridylazo)-2-naphthol (PAN) was used as a complexing agent and octylphenoxypolyethoxyethanol (Triton X-114) was added as a surfactant; then the pH of solution was adjusted. After phase separation at 50 °C based on the cloud point extraction of the mixture, the surfactant-rich phase was dried and the remaining phase was dissolved using 20 μL of carbon tetrachloride. The obtained solution was introduced into the quartz micro cell and the analyte was determined by thermal lens spectrometry. The He-Ne laser (632.8 nm) was used as both the probe and the excite source.Under optimum conditions, the analytical curve was linear for the concentration range of 0.2-40 ng mL−1 and the detection limit was 0.03 ng mL−1. The enhancement factor of 470 was achieved for a 10 mL sample. Relative standard deviations were lower than 5%.The method was successfully applied to the extraction and determination of cobalt in tap, river and sea water. 相似文献
5.
A cloud point extraction method has been developed using an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, BMiM PF(6)) for the determination of a widely studied cyanotoxin (microcystin leucine-arginine, MCLR) in natural waters. Extraction parameters such as sample pH, extraction temperature, extraction time, the amount of ionic liquid and the amount of extraction volume were investigated and optimized to achieve the maximum extraction efficiency. The results obtained indicated a good linearity with the correlation coefficient of 0.995 over the range of 0.5-50 μg L(-1). The relative standard deviation (RSD) of the method was 7.5% (n=6). The calculated method detection limit was 0.03 μg L(-1) (n=6). The practical applicability of the technique was demonstrated by analyzing water samples (n=9) collected from three different sites in local reservoirs. 相似文献
6.
A novel and sensitive cloud point extraction procedure using pH-sensitive hydrogel was developed for preconcentration and spectrophotometric determination of trace amounts of malachite green (MG). In this extraction method, appropriate amounts of poly(styrene-alt-maleic acid), as a pH-sensitive hydrogel, and HCl were added respectively into the aqueous sample so a cloudy solution was formed. The cloudy phase consists of hydrogel particles distributed entirely into the aqueous phase. Organic or inorganic compounds having the potential to interact with polymer particles (chemical interaction or physical adsorption) could be extracted to cloudy phase. After centrifuging, these particles of hydrogel were sedimented in the bottom of sample tube. The sedimented hydrogel-rich phase was diluted with acetonitrile and its absorbance was measured at 617 nm (λmax of malachite green in hydrogel). Central composite design and response surface method were applied to design the experiments and optimize the experimental parameters such as, concentration of hydrogel and HCl, extraction time and salting out effect. Under the optimum conditions, the linear range was 1 × 10−8-5 × 10−7 mol L−1 malachite green with a correlation coefficient of 0.992. The limit of detection (S/N = 3) was 4.1 × 10−9 mol L−1. Relative standard deviation (RSD) for 7 replicate determinations of 10−7 mol L−1 malachite green was 3.03%. In this work, the concentration factor of 20 was reached. Also the improvement factor of the proposed method was 23. The advantages of this method are simplicity of operation, rapidity and low cost. 相似文献
7.
In the present paper, conventional spectrophotometry in conjunction with cloud point extraction-preconcentration were investigated as alternative methods for paracetamol (PCT) assay in urine samples. Cloud point extraction (CPE) was employed for the preconcentration of p-aminophenol (PAP) prior to spectrophotometric determination using the non-ionic surfactant Triton X-114 (TX-114) as an extractant. The developed methods were based on acidic hydrolysis of PCT to PAP, which reacted at room temperature with 25,26,27,28-tetrahydroxycalix[4]arene (CAL4) in the presence of an oxidant (KIO(4)) to form an blue colored product. The PAP-CAL4 blue dye formed was subsequently entrapped in the surfactant micelles of Triton X-114. Cloud point phase separation with the aid of Triton X-114 induced by addition of Na(2)SO(4) solution was performed at room temperature as an advantage over other CPE assays requiring elevated temperatures. The 580 nm-absorbance maximum of the formed product was shifted bathochromically to 590 nm with CPE. The working range of 1.5-12 mug ml(-1) achieved by conventional spectrophotometry was reduced down to 0.14-1.5 mug ml(-1) with cloud point extraction, which was lower than those of most literature flow-through assays that also suffer from nonspecific absorption in the UV region. By preconcentrating 10 ml sample solution, a detection limit as low as 40.0 ng ml(-1) was obtained after a single-step extraction, achieving a preconcentration factor of 10. The stoichiometric composition of the dye was found to be 1 : 4 (PAP : CAL4). The impact of a number of parameters such as concentrations of CAL4, KIO(4), Triton X-100 (TX-100), and TX-114, extraction temperature, time periods for incubation and centrifugation, and sample volume were investigated in detail. The determination of PAP in the presence of paracetamol in micellar systems under these conditions is limited. The established procedures were successfully adopted for the determination of PCT in urine samples. Since the drug is rapidly absorbed and excreted largely in urine and its high doses have been associated with lethal hepatic necrosis and renal failure, development of a rapid, sensitive and selective assay of PCT is of vital importance for fast urinary screening and antidote administration before applying more sophisticated, but costly and laborious hyphenated instrumental techniques of HPLC-SPE-NMR-MS. 相似文献
8.
N. Shokoufi 《Talanta》2007,73(4):662-667
A new combination method, employing thermal lens spectrometry (TLS) after cloud point extraction (CPE), has been developed for the preconcentration and determination of rhodium. TLS and CPE methods have good matching conditions for the combination because TLS is a suitable method for the analysis of low volume samples obtained after CPE.Rhodium was complexed with 1-(2-pyridylazo)-2-naphthol (PAN) as a complexing agent in an aqueous medium and concentrated by octylphenoxypolyethoxyethanol (Triton X-114) as a surfactant. After the phase separation at 50 °C based on the cloud point extraction of the mixture, the surfactant-rich phase was dried and the remaining phase was dissolved using 20 μL of carbon tetrachloride. The obtained solution was introduced into a quartz micro cell and the analyte was determined by laser induced-thermal lens spectrometry (LI-TLS). The single laser TLS was used as a sensitive method for the determination of Rhodium-PAN complex in 20 μL of the sample. Under optimum conditions, the analytical curve was linear for the concentration range of 0.5-50 ng mL−1 and the detection limit was 0.06 ng mL−1. The enhancement factor of 450 was achieved for 10 mL samples containing the analyte and relative standard deviations were lower than 5%. The developed method was successfully applied to the extraction and determination of rhodium in water samples. 相似文献
9.
F. Nazari Serenjeh P. Hashemi M. Safdarian Z. Kheirollahi 《Journal of the Iranian Chemical Society》2014,11(3):733-739
A semi-automated cold column trapping-cloud point extraction (CCT-CPE) method was developed and applied to the determination of phenazopyridine in human serum. In the proposed technique, a mixture of sample (pH 8) and Triton X-100 (0.4 % v/v) was incubated at 90 °C for 5 min in a heating sample cell. The developed turbid solution was then flowed through a CCT preconcentration column packed with C18 sorbent using a peristaltic pump. A pair of thermal electric cooler (TEC) plates was used for cooling the column. The surfactant-rich phase was retained on the CCT at 0 °C and desorbed, subsequently, in an elevated temperature by ethanol. The analytical parameters such as pH, surfactant concentration, temperature and incubation time were optimized by a central composite design (response surface) method. Six replicated analyses at the optimized conditions resulted in a recovery of 99.7 % and a relative standard deviation of 2.45 for phenazopyridine. The detection limit of the method (3σ) was 0.50 mg L?1 for the analyte. Compared to conventional CPE, the proposed CCT-CPE method required less sample handling, eliminated the centrifugation step and was substantially faster. The method was successfully applied to the determination of phenazopyridine in some human serum and tablet samples. 相似文献
10.
The cloud point extraction methodology has been used to develop a new procedure for the preconcentration of polycyclic aromatic hydrocarbons in water samples (bottled and network supply). Triton X-114 was used as extractant agent. The procedure, consisting of three steps (preconcentration into the surfactant, clean-up and concentration of the eluate), allows good detection limits to be reached (from nanograms per liter to even sub-nanograms per liter in some cases). Determination was carried out by HPLC, with fluorimetric detection and wavelength programming. 相似文献
11.
Liquid-liquid extraction (LLE) and cloud point extraction (CPE) of vanadium(V) ternary complexes with 4-(2-pyridylazo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolum chloride (TTC) were investigated. The optimal conditions for vanadium extraction and spectrophotometric determination were identified. The composition (V: PAR: TTC) of the extracted species was 1:2:3 (optimal conditions; LLE), 2:2:2 (low reagents concentrations; LLE), 1:1:1 (short heating time;CPE), and 1: 1: 1 + 1: 1: 0 (optimal extraction conditions; CPE). LLE, performed in the presence of 1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid and NH4F as masking agents, afforded the sensitive, selective, precise, and inexpensive spectrophotometric determination of vanadium. The absorption maximum, molar absorptivity, limit of detection, and linear working range were 559 nm, 1.95 × 105 dm3 mol?1 cm?1,0.7 ng cm?3, and 2.2–510 ng cm?3, respectively. The procedure thus developed was applied to the analysis of drinking waters and steels. The relative standard deviations for V(V) determination were below 9.4 % (4–6 × 10?7 mass %; water samples) and 2.12 % (1–3 mass %; steel samples). 相似文献
12.
Novel strategies are proposed to circumvent the main drawbacks of flow-based cloud point extraction (CPE). The surfactant-rich phase (SRP) was directly retained into the optical path of the spectrophotometric cell, thus avoiding its dilution previously to the measurement and yielding higher sensitivity. Solenoid micro-pumps were exploited to improve mixing by the pulsed flow and also to modulate the flow-rate for retention and removal of the SRP, thus avoiding the elution step, often carried out with organic solvents. The heat released and the increase of the salt concentration provided by an on-line neutralization reaction were exploited to induce the cloud point without an external heating device. These innovations were demonstrated by the spectrophotometric determination of iron, yielding a linear response from 10 to 200 μg L−1 with a coefficient of variation of 2.3% (n = 7). Detection limit and sampling rate were estimated at 5 μg L−1 (95% confidence level) and 26 samples per hour, respectively. The enrichment factor was 8.9 and the procedure consumed only 6 μg of TAN and 390 μg of Triton X-114 per determination. At the 95% confidence level, the results obtained for freshwater samples agreed with the reference procedure and those obtained for digests of bovine muscle, rice flour, brown bread and tort lobster agreed with the certified reference values. The proposed procedure thus shows advantages in relation to previously proposed approaches for flow-based CPE, being a fast and environmental friendly alternative for on-line separation and pre-concentration. 相似文献
13.
Jahan B. Ghasemi Beshare Hashemi Mojtaba Shamsipur 《Journal of the Iranian Chemical Society》2012,9(3):257-262
A cloud point extraction (CPE) process using the nonionic surfactant Triton X-114 to simultaneous extraction and spectrophotometric determination of uranium and zirconium from aqueous solution using partial least squares (PLS) regression is investigated. The method is based on the complexation reaction of these cations with Alizarin Red S (ARS) and subsequent micelle-mediated extraction of products. The chemical parameters affecting the separation phase and detection process were studied and optimized. Under the optimum experimental conditions (i.e. pH 5.2, Triton X-114?=?0.20%, equilibrium time 10?min and cloud point 45?°C), calibration graphs were linear in the range of 0.01?C3?mg?L?1 with detection limits of 2.0 and 0.80???g L?1 for U and Zr, respectively. The experimental calibration set was composed of 16 sample solutions using an orthogonal design for two component mixtures. The root mean square error of predictions (RMSEPs) for U and Zr were 0.0907 and 0.1117, respectively. The interference effect of some anions and cations was also tested. The method was applied to the simultaneous determination of U and Zr in water samples. 相似文献
14.
Recently, cloud point extraction (CPE) has been an attractive subject as an alternative to liquid–liquid extraction. The technique
is based on the property of most non-ionic surfactants in aqueous solutions to form micelles and become turbid when heated
to the cloud point temperature. This review covers a selection of the literature published on applications of CPE in determination
of metal ions over the period between 2004 and 2008. 相似文献
15.
Polina Davletbaeva Marina FalkovaEvgenia Safonova Leonid MoskvinAndrey Bulatov 《Analytica chimica acta》2016
A novel stepwise injection fluorometric method for the determination of epinephrine in human urine has been developed. In the current study, the stepwise injection analysis (SWIA) was successfully combined with on-line in-syringe cloud point extraction (CPE) and fluorometric detection. The procedure was based on the epinephrine derivatization in the presence of o-phenylenediamine followed by the preconcentration stage based on the CPE with the nonionic surfactant Triton X-114. After the phase separation into a syringe of the flow system, the micellar phase containing the epinephrine derivative was transported to a fluorometric detector. The excitation and emission wavelengths were set at 447 nm and 550 nm, respectively. The conditions of epinephrine derivatization and CPE have been studied. The calibration plot constructed using the developed procedure was linear in the range of 1·10−11–5·10−7 mol L−1. The limit of detection, calculated as 3 σ of a blank test (n = 10), was found to be 3·10−12 mol L−1. The proposed method was successfully applied for the determination of epinephrine in human urine samples. 相似文献
16.
Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100 总被引:1,自引:0,他引:1
A new micelle-mediated cloud point extraction method is described for sensitive and selective determination of trace amounts of rhodamine B by spectrophotometry. The method is based on the cloud point extraction of rhodamine B from aqueous solution using Triton X-100 in acidic media. The extracted surfactant rich phase is diluted with water and its absorbance is measured at 563 nm by a spectophotometer. The effects of different operating parameters such as concentration of surfactant and salt, temperature and pH on the cloud point extraction of rhodamine B were studied in details and a set of optimum conditions were obtained. Under optimum conditions a linear calibration graph in the range of 5-550 ng mL−1 of rhodamine B in the initial solution with r = 0.9991 (n = 15) was obtained. Detection limit based on three times the standard deviation of the blank (3Sb) was 1.3 ng mL−1 (n = 10) and the relative standard deviation (R.S.D.) for 50 and 350 ng mL−1 of rhodamine B was 2.40 and 0.87% (n = 10), respectively. The method was applied for the determination of rhodamine B in soft pastel, hand washing liquid soap, matches tip and textile dyes mixture samples. 相似文献
17.
本文建立了离子液体协同增敏浊点萃取-紫外可见分光光度法测定痕量镉的方法。离子液体和二硫代氨基甲酸钠(DDTC)分别用作增敏剂和络合剂,离子液体的加入能使测定镉的方法灵敏度提高3.2倍。非离子表面活性剂TritonX-100用作提取剂,当样品体系的温度高于TritonX-100的浊点温度时,镉与DDCT形成的络合物被萃取到TritonX-100中,经相分离紫外可见分光光度计检测。考查了离子液体,DDTC和TritonX-100的浓度、溶液酸度、干扰离子等实验条件对浊点萃取效率的影响。在最优化的实验条件下,测量镉的线性范围为1~100 ng·mL-1,方法的检出限为0.1 ng·mL-1,相对标准偏差RSD为4.3%,富集系数为96。该方法应用于测定于水样中的痕量镉具有满意的效果。 相似文献
18.
Separation and preconcentration by cloud point extraction procedures for determination of ions: recent trends and applications 总被引:1,自引:0,他引:1
The cloud point extraction procedure is an alternative to liquid–liquid extraction and based on the phase separation that occurs in aqueous solutions of non-ionic surfactants when heated above the so-called cloud point temperature. We review the more recent applications for determination of ions by means of this procedure for sample preparation over the range 2009 to first part of 2011. Following an introduction, the article covers aspects of cloud point extraction of one metal ion, two metals ions simultaneously, three metal ions simultaneously, multielement analysis, anions analysis, and on-line cloud point extraction. One hundred sixteen references are cited. Figure
Scheme of the CPE procedure. CPE techniques exploit a property of most non-ionic surfactants that form micelles in aqueous solution: they become turbid when heated to the appropriate cloud point temperature. Above the cloud point temperature, the micellar solution separates into a small, surfactant rich phase and a larger diluted aqueous phase 相似文献
19.
A new combined method including fiber optic-linear array detection spectrophotometry (FO-LADS) and cloud point extraction (CPE) was developed using a cylindrical micro cell for simultaneous preconcentration and determination of different species. The CPE and FO-LADS methods have good matching conditions for combination because FO-LADS is suitable as a detection technique for the low volume of remained phase obtained after CPE. This combination was carried out using 50 μL cylindrical micro cell and then employed for simultaneous preconcentration and determination of cobalt and nickel.Cloud point extraction method was based on the chromogenic reaction of metal ions and 1-(2-pyridylazo)-2-naphthol (PAN) and then preconcentration of formed complexes using octylphenoxypolyethoxyethanol (Triton X-114). The remained phase after CPE was transferred into cylindrical micro cell and located at the cell holder of FO-LADS. The spectra of cobalt and nickel complexes were collected by FO-LADS and processed for ordinary and first derivative spectrophotometry.Optimization of different parameters was evaluated. Under optimum conditions, calibration curves were linear in the range of 0.6-30.0 and 0.1-15.0 μg L−1 with detection limits of 0.2 and 0.04 μg L−1 for Co and Ni respectively. The relative standard deviations (R.S.D.s) were lower than 4%. The obtained enhancement factors were 198 and 199 for cobalt and nickel, respectively.The proposed method was compared with the other methods and applied to the analysis of several real and spiked samples. 相似文献
20.
Uranium determination in water samples by liquid scintillation counting after cloud point extraction
Eleni Constantinou Ioannis Pashalidis 《Journal of Radioanalytical and Nuclear Chemistry》2010,286(2):461-465
The aim of this study is the radiometric determination of uranium in waters by liquid scintillation counting (LSC) after pre-concentration of the element by cloud point extraction (CPE). For CPE, tributyl phosphate (TBP) is used as the complexing agent and (1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol (Triton X-114) as the surfactant. The measurement is performed after phase separation by mixing of the surfactant phase with the liquid scintillation cocktail. The effect of experimental conditions such as pH, reactant ratio (e.g. m(TBP)/m(Triton), ionic strength (e.g. [NaCl]) and the presence of other chemical species (e.g. Ca2+ and Fe3+ ions as well as humic acid and silica colloids) on CPE has been investigated. According to the experimental results the total method efficiency is (13 ± 2)% and the chemical recovery (50 ± 10)% at pH 4 and reactant ratio (V(TBP)/V(Triton) = 0.1). Regarding the other parameters, generally Ca2+ and Fe3+ ions as well as the presence of colloidal species in solution (even at low concentrations) results in significant decrease of the chemical recovery of uranium. On the other hand increasing NaCl concentration leads to enhancement of chemical recovery. The detection limit under optimum experimental conditions has been found to be 0.5 Bq L?1 indicating that the method could be applied only to waters samples with increased uranium concentration. Moreover, the negative effect of the chemical species found in natural waters limits the applicability of the method with the respect to environmental radioactivity measurements. 相似文献