首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of hydrogen absorption/desorption in Pd-Pt and Pd-Pt-Rh alloys has been investigated using cyclic voltammetry. Hydrogen absorbed at constant potential was electrooxidized at various scan rates. The charge of hydrogen oxidation has been found to be dependent on the scan rate. The decrease in the oxidation charge observed for low scan rates indicates that, under these conditions, some amount of hydrogen may be removed via a non-electrochemical recombination reaction. The results suggest that the dual mechanism of hydrogen desorption, involving electrochemical oxidation and non-electrochemical recombination, confirmed for pure palladium, is valid also for palladium alloys.Contribution to the 3rd Baltic Conference on Electrochemistry, GDASK-SOBIESZEWO, 23–26 APRIL 2003.Dedicated to the memory of Harry B. Mark, Jr. (February 28, 1934–March 3rd, 2003)  相似文献   

2.
The electrochemical behavior of a nickel electrode with limited volume (LVE) electrodeposited as a thin layer on gold has been studied. The influence of the gold matrix on the electrochemical Ni electrode behavior has been considered. The electrosorption and oxidation of carbon monoxide on the Ni surface and its influence on hydrogen sorption has also been demonstrated. Received: 21 May 1997 / Accepted: 9 June 1997  相似文献   

3.
The review summarizes the studies on the phenomenon of carbon dioxide electrosorption on platinum group metals and alloys. This subject is strictly linked to the research in the field of electrocatalysis and fuel cells. The work aims to present current knowledge on the processes of CO2 electrosorption and the adsorbate oxidation on Pt, Rh, and their alloys as well as on the influence of various factors on the electrochemical behavior of reduced CO2 on these materials. The experimental methods commonly applied in these investigations are characterized from the point of view of their ability to determine the nature of the adsorbate. The problem of similarities and differences between reduced CO2 and adsorbed CO is also discussed.  相似文献   

4.
The electrochemical behavior of Pd–Pt–Rh alloys has been investigated using cyclic voltammetry (CV). The alloys were prepared by electrochemical codeposition as limited volume electrodes (less than 1 m in thickness). The morphology of the alloy surface and bulk compositions were examined by the SEM/EDAX method. Surface oxides generation (oxygen adsorption) and oxides reduction (oxygen desorption) currents together with hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. During potential cycling through the full hydrogen–oxygen potential range Rh and Pd are preferentially dissolved, which is reflected in a dramatic transformation in the voltammogram shape. The composition changes involve not only the surface but also some atomic layers beneath the surface.  相似文献   

5.
The electrochemical quartz crystal microbalance (EQCMB) method has been used to study the processes of hydrogen absorption/desorption in Pd-Ni alloy electrodes. It was found that hydrogen electrosorption is accompanied by an additional frequency shift, attributed to the stresses generated inside the alloy. The influence of stresses on the EQCMB response depends on the amount of absorbed hydrogen and the alloy composition. From the comparison of the EQCMB results with Pd-Ni alloy absorption capabilities data, it was concluded that the decrease of the hydrogen sorption capacity at a Ni content of ca. 25–30 at% is due to an excessive generation of stresses in the alloy lattice. Also, a dependency of the rate of hydrogen absorption in Pd-Ni alloys on potential is reported. Electronic Publication  相似文献   

6.
电化学方法研究贮氢电极合金的P—C—T曲线   总被引:1,自引:0,他引:1  
根据电化学和热力学的基础理论,考虑了氢气的逸度、碱液中水的活度以及碱液中水蒸汽的分压等影响因素,精确计算了金属氢化物电极反应的能斯特方程。结合三电极测试体系,建立了一套贮氢电极合金的P-C-T曲线电化学测定方法,并给出实验操作及相关参数确定的细节。该方法适用于涉及到大量实验工作的贮氢电极合金的成分优化及工艺研究。  相似文献   

7.
Two series of overstoichiometric AB2.4 alloys [(Zr0.35Ti0.65)(V1.33Cr0.4Fe0.27)2– x Ni0.4+ x and (Zr0.5Ti0.5)(V0.8Mn0.8Cr0.4)2– x Ni0.4+ x ], differing in the Zr to Ti ratios in group A and the presence of Mn or Fe in group B, were examined to consider the influence of various amounts of nickel on the structural parameters following the sorption of hydrogen. To predict the electrochemical behaviour of the prepared alloys as negative electrodes for Ni-MH cells, the pressure-composition isotherms (PCT) determined for the gas/solid phase system were correlated with the electrochemical pressure-composition (EPC) isotherms estimated from the rest potential of the alloy electrode. For preliminary assessment of the practical usefulness of the prepared samples, the electrodes made of all the alloys were subjected to charge/discharge measurements in a half-cell in 6 M KOH solution and the discharge capacities were estimated. Of the alloys with Fe and Mn components, the samples (Zr0.35Ti0.65)(V0.93Cr0.28Fe0.19Ni1.0) and (Zr0.5Ti0.5)(V0.68Mn0.68Cr0.34Ni0.7) provided the highest capacities. These alloys were chosen for testing the charge/discharge cycleability in closed Ni-MH cells. The reversibility of the cell with the former sample decreased significantly around the 25th cycle, whereas the discharge capacity of the cell with the latter sample remained almost unchanged during 100 cycles of testing. Electronic Publication  相似文献   

8.
《Analytical letters》2012,45(14):2549-2561
Abstract

A comparative cyclic voltammetric study of the hydrogen and deuterium sorption into a thin layer palladium electrode has been performed in acidic and basic solution containing rubidium cations. As in the case of other alkali cations, rubidium appears to clearly influence the α - to β- phase transition only in basic solution.  相似文献   

9.
R. Kumar  S. Deng 《Adsorption》2006,12(5-6):361-373
Liquid Nitrogen is required in the semiconductor industry. This is generally produced by cryogenic distillation of air. However, trace levels of Carbon Monoxide and Hydrogen need to be removed from Nitrogen prior to its use in the semiconductor industry. This may be accomplished by catalytic conversion of trace Carbon Monoxide and Hydrogen to Carbon dioxide and Water, respectively. These impurities (Carbon dioxide and Water) are then removed by adsorption from air. The latest technology is to incorporate the catalytic conversion into adsorption based thermal swing pre-purification units, which are already used to remove Water and Carbon dioxide from air prior to its cryogenic distillation. Our experiments show that even though Hydrogen is converted to Water by a catalytic reaction, presence of Carbon dioxide in this stream significantly lowers the performance of the catalyst by as much as five-fold. Also, Hydrogen removal by the novel metal Pd catalyst does not follow a typical catalyst behavior but an adsorption breakthrough type behavior, i.e. for a constant inlet concentration the outlet concentration of Hydrogen breaks through at some time and then increases with time. On the other hand, Carbon monoxide conversion on a Hopcalite type catalyst follows typical catalyst behavior, i.e. for a constant inlet concentration the outlet concentration of Carbon monoxide is constant and does not change with time. Experimental data demonstrating these effects followed by a theoretical explanation are presented.  相似文献   

10.
The influence of substitution Pr for La and Ni for Co on hydrogen storage properties of Pr1-xLaxMgNi4-yCoy (х = 0; 0.5, у = 0–3) alloys were studied. The existences of solid solutions have been found. It is shown that the synthesized alloys absorb hydrogen at room temperature and hydrogen pressure 0.1–10 bar. For some of the studied compounds, the formation of hydrides with cubic and orthorhombic structures was found. Hydrogen capacity for Pr1-xLaxMgNi4-yCoy alloys increases with Co content increasing and reaches 6.6 H/f.u. for PrMgNi2Co2. For electrochemical hydrogenation different trend was observed. With increasing of Co content discharge capacity slightly increases only to y = 0.5, and after y > 0.5, decreases. Highest discharge capacity is equal to 305 mА∙h/g for Pr0.5La0.5MgNi3.5Co0.5, and 268 mА∙h/g for PrMgNi3.5Co0.5 at current densities 50 mА/g and 200 mA/g, respectively. Influence of Co and number of activation cycles on HRD value of PrMgNi4-yCoy alloys was investigated. Additionally, obtained results of the electrochemical properties were compared with related compounds.  相似文献   

11.
It was demonstrated that adsorbed CO is obtained from the reduction of NaHCO3 solution when Pt(100), Pt(110), disordered Pt(111) and polycrystalline electrodes are employed. Reduction of CO2 coming from the dissociation of the hydrogencarbonate anion is proposed as the reaction that produces CO. By using Fourier transform infrared spectroscopy, linear and multi-bonded CO were detected on polycrystalline platinum electrodes. The shape of the band associated with linearly adsorbed CO is monopolar as a consequence of the partial overlapping, at lower wavenumbers, of the absolute bands at both potentials (0.05 and 0.35 V).  相似文献   

12.
The effect of the stoichiometric factor on the electrochemical and gas-phase behavior of hydride-forming intermetallic alloys of the Ti0.45Zr0.55NiyV0.45Mnx general composition is studied. The structure and the phase composition of the alloys were investigated by means of X-ray diffraction, electron microscopy, and electron probe microanalysis. An introduction of hydrogen does not change the structure type and hydriding is accompanied by an isotropic increase in the cell volume by about 20%. The alloys studied demonstrate maximum values of hydrogen sorption capacity, discharge capacity, and good rate capability throughout a wide range of compositions, rather than in a narrow region in the vicinity of the stoichiometric composition.Dedicated to Professor W. Vielstich on his 80th birthday as an acknowledgement of the contribution he made to the development of electrochemistry.  相似文献   

13.
Occlusion of hydrogen in platinized platinum electrodes has been studied in 1 mol/dm3 H2SO4 electrolyte. It has been found that the amount of hydrogen dissolved in the platinum layer depends on the structure of the Pt deposit, which is determined by the parameters of electrodeposition. Composition of the platinizing solution as well as the potential of Pt deposition are decisive parameters. On the basis of experimental results it is assumed that occlusion of hydrogen takes place in special structural elements of the platinum layer which are formed in the course of Pt deposition. Hydrogen dissolution versus H-deposition potential, H-deposition time and Pt layer thickness relationships are also presented. Received: 2 March 1999 / Accepted: 25 May 1999  相似文献   

14.
Electrochemical behavior of metal hydrides   总被引:1,自引:0,他引:1  
Metal hydride electrodes are of particular interest owing to their potential and practical application in batteries. A large number of hydrogen storage materials has been characterized so far. This paper deals with the effect of the chemical nature and stoichiometry of specific alloy families (AB5, A2B, AB/AB2 and AB2) on the hydride stability, hydrogen storage capacity and kinetics of hydrogen sorption-desorption in the solid phase/gas and solid phase/electrolyte solution systems. Special attention has been paid towards the electrochemical properties of metal hydrides in terms of their performance in Ni-MH rechargeable alkaline cells. Electronic Publication  相似文献   

15.
Adsorption (at a low temperature) of nitrogen on the protonic zeolite H-Y results in hydrogen bonding of the adsorbed N2 molecules with the zeolite Si(OH)Al Brønsted-acid groups. This hydrogen-bonding interaction leads to activation, in the infrared, of the fundamental N–N stretching mode, which appears at 2334 cm−1. From infrared spectra taken over a temperature range, the standard enthalpy of formation of the OH···N2 complex was found to be ΔH0 = −15.7(±1) kJ mol−1. Similarly, variable-temperature infrared spectroscopy was used to determine the standard enthalpy change involved in formation of H-bonded CO complexes for CO adsorbed on the zeolites H-ZSM-5 and H-FER; the corresponding values of ΔH0 were found to be −29.4(±1) and −28.4(±1) kJ mol−1, respectively. The whole set of results was analysed in the context of other relevant data available in the literature.  相似文献   

16.
Novel amorphous Ni–B catalysts supported on alumina have been developed for the production of hydrogen peroxide from carbon monoxide, water and oxygen. The experimental investigation confirmed that the promoter/Ni ratio and the preparation conditions have a significant effect on the activity and lifetime of the catalyst. Among all the catalysts tested, the Ni–La–B/γ-Al2O3 catalyst with a 1:15 atomic ratio of La/Ni, dried at 120 °C, shows the best activity and lifetime for the production of hydrogen peroxide. The deactivation of the alumina-supported Ni–B amorphous catalyst was also studied. According to the characterizations of the fresh and used catalysts by SEM, XRD and XPS, no sintering of the active component and crystallization of the amorphous species were observed. However, it is water poisoning that leads to the deactivation of the catalyst. The catalyst characterization demonstrated that the active component had changed (i.e., amorphous NiO to amorphous Ni(OH)2) and then salt was formed in the reaction conditions. Water promoted the deactivation because the surface transformation of the active Ni species was accelerated by forming Ni(OH)2 in the presence of water. The formed Ni(OH)2 would partially change to Ni3(PO4)2.  相似文献   

17.
Hydrogen absorption in Ni–Pd alloys has been investigated. The amount of absorbed hydrogen in alloys containing below 20 at.% of nickel is equal to the amount of hydrogen sorbed in pure palladium. Hydrogen absorption occurs in the range 0–40 at.% of nickel concentration. Cyclic voltammograms recorded at Ni–Pd alloys have characteristic peaks which overlap with the responses due to processes occurring on the surface at Ni and Pd atoms. Also some of the processes characteristic of the pure metals can be distinguished from the recorded voltammograms.  相似文献   

18.
Methane(CH4) is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM) using photocatalysts can realize the production of syngas(CO+H2) with low energy consumption.In this work,Ag0/Ag+-loaded SrTi03 nanocomposites were successfully prepared through a photodeposition method.When the loading amount of Ag is 0.5 mol%,the atom ratio of Ag+ to Ag0 was found to be 51:4...  相似文献   

19.
Polymer electrolyte fuel cells constitute one of the most important efficiency energy converters for non-centralised uses. However, the use of fuels arising from reformate processes significantly lowers the current efficiency because of anodic catalytic poison coming from adsorbed carbon monoxide (COad). In this work, the influence of the addition of hydrogen peroxide in the flow current is studied, considering the adsorption and electrochemical oxidation of carbon monoxide on carbon-supported Pt (20% Pt/Vulcan) and Pt:Ru (1:1, 20% Pt:Ru/Vulcan) catalysts in 2 M sulphuric acid. The investigation was conducted applying cyclic voltammetry and on-line differential electrochemical mass spectrometry. A series of experiments has been performed to investigate the influence of the temperature as well as the time of contact and the concentration of hydrogen peroxide. Oxidation of COad to carbon dioxide occurs at lower potentials in the presence of hydrogen peroxide. Moreover, it is possible to remove ca. 70% of COad on Pt/C electrodes. On the other hand, for PtRu/C electrodes, similar charge values to those of Pt/C electrodes were obtained for the CO stripping, but the process occurs at more negative potentials. In this case, the effect of partial desorption for COad by interaction with hydrogen peroxide is added to the bifunctional mechanism usually considered for this alloy. This paper is dedicated to Prof. Francisco Nart, in memoriam.  相似文献   

20.
The Ml-Mg-Ni-based (Ml = La-rich mixed lanthanide) hydrogen storage alloy Ml0.88Mg0.12Ni3.0-Mn0.10Co0.55Al0.10 was prepared by inductive melting. The micro-structure was analyzed by XRD and SEM. The alloy consists mainly of CaCu5-type phase, Ce2Ni7-type phase and Pr5Co19-type phase. The electrochemical measurements show that the maximum discharge capacity is 386 mAh/g, 16.3% higher than that of the commercial AB5-type alloy (332 mAh/g). At discharge current density of 1 100 mA/g, high rate dischargeability is 62%, while that of the AB5-type alloy is only 45%. The discharge capacity decreases to 315 mAh/g after 300 charge/ discharge cycles, 81.5% of the maximum discharge capacity. __________ Translated from Journal of Xi’an Jiao Tong University, 2008, 42(3) (in Chinese)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号