首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation into the influence of UV irradiation on elastin hydrolysates in the presence of collagen was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorbance of elastin hydrolysates in solution increased during irradiation more than the absorbance of the elastin/collagen blend. The fluorescence of elastin hydrolysates was observed at 305nm and at 380nm after excitation at 270nm. For the elastin/collagen mixture in solution, fluorescence spectrum shows only one maximum at 305nm. UV irradiation caused fluorescence fading at 305nm. For irradiated elastin the fluorescence at 305nm decreased faster than for the irradiated elastin/collagen mixture. The maximum of the fluorescence peak was shifted for elastin by 4nm, whereas for the elastin/collagen blends the shift was only 1-2nm. All the obtained results point out the ability of mixing elastin and collagen, and suggest that the elastin/collagen mixture in solution is less sensitive to UV irradiation than elastin hydrolysates alone.  相似文献   

2.
Here we uncover collagen, the main structural protein of all connective tissues, as a redox-active material. We identify dihydroxyphenylalanine (DOPA) residues, post-translational oxidation products of tyrosine residues, to be common in collagen derived from different connective tissues. We observe that these DOPA residues endow collagen with substantial radical scavenging capacity. When reducing radicals, DOPA residues work as redox relay: they convert to the quinone and generate hydrogen peroxide. In this dual function, DOPA outcompetes its amino acid precursors and ascorbic acid. Our results establish DOPA residues as redox-active side chains of collagens, probably protecting connective tissues against radicals formed under mechanical stress and/or inflammation.  相似文献   

3.
An investigation of the photochemical properties of collagen Type I in acetic acid solution was carried out using nanosecond laser irradiation. The transient spectra of collagen solution excited at 266 nm show two bands. One of them with maximum at 295 nm and the second one with maximum at 400 nm. The peak at 400 nm is assigned to tyrosyl radicals. The first peak of the transient absorption spectra at 295 nm is probably due to photoionisation producing collagen radical cation. The transient for collagen solution in acetic acid at 640 nm was not observed. It is evidence that there is no hydrated electron in the irradiated collagen solution. The reactions of hydrated electrons and (*)OH radicals with collagen have been studied by pulse radiolysis. In the absorption spectra of products resulting from the reaction of collagen with e(aq)(-) no characteristic maximum absorption in UV and visible light region has been observed. In the absorption spectra of products resulting from the reaction of the hydroxyl radicals with collagen two bands have been observed. The first one at 320 nm and the second one at 405 nm. Reaction of (*)OH radicals with tyrosine residues in collagen chains gives rise to Tyr phenoxyl radicals (absorption at 400 nm).  相似文献   

4.
Exposure to ultraviolet (UV) radiation may induce erythema, DNA damage and suppression of immune responses. Melanin pigmentation offers protection against the first two of these effects, but immunosuppression seems to occur irrespective of the subject's pigmentation. Cis-urocanic acid (cis-UCA), produced by isomerization of trans-UCA in the stratum corneum on UV exposure, initiates some of the immunomodulatory effects of UV radiation. In the present study the relationship between skin pigmentation and UCA isomerization has been examined in 28 healthy individuals of skin types I-IV. Pigmentation is measured in five areas of not recently exposed back skin before irradiation with 0, 0.45, 0.9, 1.8 and 3.6 standard erythema dose (SED) of filtered broadband UV-B (1 SED = 10 mJ cm-2 at 298 nm). The concentration of UCA isomers is measured immediately after the irradiation. With 3.6 SED, the relative production of cis-UCA is close to the maximum obtainable, irrespective of skin type. A significant negative correlation is found between pigmentation and relative production of cis-UCA at 0.45 and 1.8 SED, and between pigmentation and absolute production of cis-UCA at 0.45 SED. At doses of 0.45 and 0.9 SED the relative and absolute production of cis-UCA are higher in the group with skin types I and II when compared with the group with skin types III and IV. The higher isomerization in the lightly pigmented subjects than in the more pigmented ones may indicate that people with fair skin are at a relatively higher risk of immunosuppression when exposed to low doses of UV radiation.  相似文献   

5.
Following a detailed study, a rapid and sensitive assay for the naturally fluorescent collagen cross-links pyridinoline and deoxypyridinoline has been developed using ion-pair reversed-phase high-performance liquid chromatography in the presence of 1-octanesulphonic acid (OSA). Pyridinoline and deoxypyridinoline were separated on an Exsil 100 ODS, 5-microns column (100 mm X 4.6 mm I.D.) using 25 mM sodium formate, 5 mM OSA and 1 mM ethylenediaminetetraacetic acid adjusted to pH 3.25, containing 20% (v/v) methanol. The mobile phase flow-rate was 1.5 ml/min. Compounds were detected by their natural fluorescence (xenon lamp; excitation wavelength 290 nm, emission wavelength 400 nm). Peak areas were linear to 25 pmol injected for pyridinoline and 20 pmol injected for deoxypyridinoline (r = 0.99). Intra-assay coefficients of variation for urinary extracts were 7.65 and 9.07% (n = 10), respectively. Limit of detection (signal-to-noise ratio = 5) was 200 fmol injected. Quantification of the cross-links in acid hydrolysates and human urine samples was possible in under 15 min.  相似文献   

6.
Little is known about the photodegradation of pyridinoline (Pyd) and deoxypyridinoline (Dpd), which are two mature cross-links stabilizing collagen within extracellular matrix. In this study, highly purified free Pyd and Dpd cross-links have been degraded by irradiation with ultraviolet light and we have shown that photolysis varies with the pH value. Assessment of photolysis in basic (pH 9) and neutral (pH 7) solutions by high-performance liquid chromatography as well as by UV absorbance measurement indicates that both cross-links are degraded after a 24 h UV exposure, while in acidic solution (pH 3) only Dpd is photolysed, suggesting that acid pH provides major protection against Pyd photolysis. Photodegradation products have been studied by amino-acid and mass spectral analysis. Both methods confirm the lack of Pyd degradation in acid pH. Furthermore, amino-acid analysis allows us to identify hydroxylysine and lysine as a result of Pyd and Dpd photolysis, respectively, indicating that the mechanism of photodegradation involves the cleavage of the pyridinium ring on each side of the quaternary nitrogen. Finally, we have also studied the photolysis of different molecular species of type I collagen peptides, obtained by digestion with collagenase of demineralized turkey bone. Our results indicate that even when they are part of the structure of collagen peptide, Pyd and Dpd can be photolysed. However, we have shown that the larger the peptide is, the smaller are the effects of UV irradiation.  相似文献   

7.
The thermal and mechanical properties of collagen/chitosan blends before and after UV irradiation have been investigated using thermal analysis and mechanical (Instron) techniques. Comparisons were made with the thermal and mechanical properties of both collagen and chitosan films. Air-dried collagen, chitosan and collagen/chitosan films were exposed to UV irradiation (wavelength 254 nm) for different time intervals. Thermal properties of collagen/chitosan blends depend on the composition of the blend and are not significantly altered by UV irradiation.Mechanical properties such as ultimate tensile strength and ultimate percentage of elongation were much better for collagen films than for collagen/chitosan films. The results have shown that the mechanical properties of the blends were greatly affected by the duration of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the blend. Increasing UV irradiation leads to an increase in Young's modulus of the collagen/chitosan blend.  相似文献   

8.
Non-enzymatic nitrite induced collagen cross-linking results in changes reminiscent of age-related damage and parallels the well-known model system, non-enzymatic glycation. We have recently observed that nitrite modification of basement membrane proteins can induce deleterious effects on overlying retinal pigment epithelial cells in studies relevant to age-related macular degeneration. The present work was undertaken in order to confirm 3-nitro-tyrosine (3-NT) as a product of the reaction and to identify the site specificity of nitration in collagen IV, a major component of basement membranes. Human collagen type IV was modified via incubation with 200 mM NaNO(2) (pH=7.38) for one week at 37(o)C. The modified protein was prepared in 2 different ways, including acid hydrolysis and trypsin digestion for site specificity determination. The samples were analyzed by LC/MS using a C(12) RP column. Site specificity was determined from tandem MS/MS data utilizing TurboSEQUEST software and the Swiss-Prot sequence database. 3-NT was detected in protein digests and acid hydrolysates of nitrite modified collagen IV. Positive identification with standard 3-NT was confirmed by identical R(t), lambda(max)=279 nm and 355 nm, and m/z=227. Analyses of tryptic digests identified four sites of tyrosine nitration, alpha1(IV)Y348, alpha1(IV)Y534, alpha2(IV)Y327, and alpha2(IV)Y1081. These sites are located in the triple-helical region of the protein and provide clues regarding potential sites for nitrite modification in collagen type IV.  相似文献   

9.
The photo‐degradation of polymer coating systems due to irradiation by UV and Xenon light sources is studied using positron annihilation spectroscopy and electron spin resonance (ESR). Doppler broadened spectra of positron annihilation, as a function of slow positron implantation energy and ESR spectra, are measured in two types of polyurethane which were exposed, ex situ, to UV irradiation for up to 800 h. The UV irradiation systematically decreases the S parameter as a function of exposure duration and increases the ESR signals. Thus, significant S parameter decrease is correlated with the ESR signal increase resulting from photo‐degradation of polymers due to UV irradiation. Parallel in situ positron annihilation and ESR experiments are performed as a function of Xenon light exposure for up to 100 min. These results show that the photo‐degradation of the polyurethane coatings involves initial free‐radical formation, which is correlated with the subnanometer defects detected by positron annihilation spectroscopy. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1289–1305, 1999  相似文献   

10.
紫外光照射对皮胶原热降解活化能的影响   总被引:1,自引:0,他引:1  
将皮胶原经不同时间的紫外光照射,采用热重法(TG)和微分热重分析(DTG)研究了照射前后皮胶原的热降解行为,用Horowitz-Metzger法和Coats-Redfern法计算了其热降解活化能,得到了未照射皮胶原和经过不同紫外线照射时间处理后的皮胶原的热降解活化能。研究发现,在较短时间(0~4h)的照射后,皮胶原的热降解活化能略有增大;在较长时间(8~64h)的照射后,皮胶原的热降解活化能大幅降低。这可能是由于在紫外光照射的过程中,皮胶原分子链发生了以交联为主和以断链为主的复杂光化学反应。  相似文献   

11.
Electron paramagnetic resonance (EPR) method has shown that hydrogen atoms and acetic acid free radicals appear in surrounding acetic acid-water solution of collagen under ultraviolet (UV) irradiation. These free radicals interact with the collagen molecule; consequently, seven superfine components of EPR spectrum with the split of aH = 11.3G and g-factor 2.001 appear. It is assumed that this spectrum is related to the free radical occurred on the proline residue in collagen molecule. In order to discover .OH hydroxyl radicals even in minor concentration, spin trap 5.5-dimethyl-1-pyrroline N-oxide (DMPO) has been applied. During the irradiation of collagen water solution in the presence of spin trap, EPR spectrum of the DMPO/.OH adduct has not been identified, while the above mentioned spectrum has been observed once the hydrogen peroxide H2O2 and FeSO4 were added to the sample. That means that water photolysis does not take place in collagen water-solution due to UV irradiation. It was suggested that occurrence of hydrogen radical is connected with the electron transmission to the hydrogen ion. The possible source of free electrons can be aromatic residues, photo ionization of which takes place in collagen molecule due to UV irradiation.  相似文献   

12.
The modifications induced in hairless mouse skin by chronic UV irradiation were investigated. Skin explant cultures were used to study UVA- and UVB-induced changes occurring in interstitial collagen (type I and type III) and fibronectin biosynthesis. To study the long-term effects, albino hairless mice were irradiated with UVA radiation alone from two sources with different spectral qualities or with UVB. UVA and UVB radiation produced a significant increase in the ratio of type III to type I collagen (more than 100% for UVA-irradiated skin and about 60% for UVB-irradiated skin) accompanied by a significantly increased fibronectin biosynthesis (50% or more in all irradiated groups). Irradiation with either UVA or UVB alone had no significant effect on the total collagen synthesis and resulted in only a slight decrease in the total collagen content of the skin determined as hydroxyproline. This decrease was significant only in the case of the group irradiated with UVA (xenon) (decrease of 25%, expressed as micrograms of hydroxyproline per milligram wet weight). A significant decrease in collagen hydroxylation (expressed as radioactive hydroxyproline/radioactive hydroxyproline plus proline in neosynthesized collagen) was observed of about 50% in skin irradiated with UVA (xenon) but not in UVB-treated skin. Several of the above modifications (increased fibronectin biosynthesis, increased collagen type III to type I ratio) correspond to the modifications observed during the aging of non-irradiated hairless mice. Therefore it appears that UV irradiation accelerates the modifications of extracellular matrix biosynthesis observed during aging.  相似文献   

13.
An investigation into the influence of UV irradiation on elastin hydrolysates dissolved in water was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorption of elastin hydrolysates in solution increased during irradiation of the sample. For fluorescence of elastin hydrolysates we observed both, a decrease and increase of this value during irradiation of the sample. After UV irradiation of the elastin solution we observed a minor increase of overall absorption, most notably between 250 nm and 280 nm. Moreover, after UV irradiation a wide peak emerged between 290 nm and 310 nm with maximum at about 305 nm. The new peak suggests that new photoproducts are formed during UV irradiation of elastin hydrolysates. The fluorescence of elastin hydrolysates was observed at 305 nm and at 380 nm after excitation at 270 nm. UV irradiation caused fluorescence fading at 305 nm and 380 nm. After 30 min of irradiation a new broad weak band of fluorescence, attributable to new photoproducts, emerged in the UV wavelength region with emission maximum between 400 nm and 500 nm.  相似文献   

14.
An accurate and precise isocratic high-performance liquid chromatographic technique for the analysis of urinary vanillactic acid (VLA) and plasma dihydroxyphenylalanine (DOPA), especially at low concentrations (pmol/l) for VLA and nmol/l for DOPA), is described. The compounds were purified in a single step, (on an anion exchanger for VLA and on aluminium oxide for DOPA), separated by ion-pair reversed-phase liquid chromatography, and detected electrochemically. A single analysis was complete within 18 min. Mean recoveries of 103 and 81% were obtained for VLA and DOPA, respectively, and the limits of detection were 42 and 76 pmol/l, respectively. The mean values of the intra-assay coefficient of variation were 14 and 7.1% for VLA and DOPA, respectively, and the mean values of the inter-assay coefficient of variation were 15.7 and 11.6%, respectively. Modifications of the retention times (between 2 and 42 min) induced by changes in the eluent were determined. Reference values for normal children and children with neuroblastoma or various tumours are given.  相似文献   

15.
A novel high-performance liquid chromatographic method for the determination of aromatic compounds based on the on-line photochemical degradation and subsequent tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection has been developed. Chemiluminescence intensity depended upon the number of aromatic rings, UV irradiation time, and variety of substituted functional groups. One of the decomposition products of aromatic compounds by UV irradiation was identified as oxalic acid. As one application of this methodology, determination of catechins in tea has been shown. Calibration graphs, based on standard (-)-epicatechin and (-)-epigallocatechin gallate solutions, were linear over the range of 0.1-50 microM. The detection limits (signal-to-noise ratio=3) were 0.8 pmol for (-)-epigallocatechin gallate and 1.2 pmol for (-)-epicatechin. The high-performance liquid chromatography-chemiluminescence (HPLC-CL) detection method with a post-column photochemical reactor can be applied to the sensitive and selective determination of catechins in tea.  相似文献   

16.
Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol /L Fe(III), 80% of PFOA with initial concentration of 48μmol/L (20 mg/L) was effectively degraded and 47.8% of fluorine atoms in PFOA molecule were transformed into inorganic fluoride ion after 4 h reaction. Shorter chain perfluorocarboxylic acids bearing C3-C7 and fluoride ion were detected and identified by LC/MS and IC as the degradation products in the aqueous solution. It was proposed that complexes of PFOA with Fe(III) initiated degradation of PFOA irradiated with 254 nm UV light.  相似文献   

17.
Binding of lead (as lead acetate) to collagen type I alpha, and alpha2 chains, collagen type V and a large cyanogen bromide fragment of type I collagen [alpha2(I)CB(3,5)] was investigated by the large-zone Hummel-Dreyer method. It was demonstrated that two categories of binding sites exist in the collagen molecule, the number of which correlates rather well with the available aspartic and glutamic acid residues. Similar results were obtained for all collagen chains (fragments) used. The number of sites thus obtained was compared with the cross-striation pattern (reflecting areas where lead is bound) of the SLS form of collagen type I (alpha1 chain); it is suggested that the number of bands seen in the SLS form reflects primarily the number of available aspartic acid residues in the molecule. The association constants obtained are comparable with the low affinity interactions seen e.g., between Cu and bovine serum albumin.  相似文献   

18.
The UV light irradiation of isoniazid (I) in methanol four products, isonicotinic acid (II), isonicotinamide (III), N, N′-bis(isonicotinic acid)hydrazide (IV) and isonicotinaldehyde isonicotinyl hydrazone (V), in ethanol three products, (III), (IV) and acetaldehyde isonicotinyl hydrazone (VI) were isolated and identified. Also, the photoreaction mechanism of isoniazid in methanol and ethanol were discussed.  相似文献   

19.
Several residues of the brewing industry and slaughtering offals were investigated in order to evaluate their potential as raw materials for the hydrolytic preparation of amino acid containing solutions, applicable as extractants in amelioration processes for metal polluted soils. The residues were hydrolysed with 6 mol/L hydrochloric acid and the hydrolysates were analysed for their total nitrogen, TOC, amino acid and heavy metal contents. Then, the leaching capacities of the hydrolysates were examined in a series of batch tests with a contaminated soil.High amino acid yields in relation to the weight of the air-dried raw materials were achieved with blood meal (72.5%) and poultry feather meal (56.6%). The portion of the detected amino acids of the total organic carbon content of the hydrolysates ranged from 38.9% (brewer's spent grain) to 93.6% (blood meal). In extraction tests with hydrolysates adjusted to a total amino acid concentration of 60 mmol/L and to a pH value of 7.0, maximum extraction yields of 50.3% for copper (soil content 279 mg kg–1) and 38.7% for nickel (soil content 54 mg kg–1) were reached. An increase of the hydrolysate concentration and of the pH of an amino acid mixture resulted in higher solubilisation of the metals.Dedicated to Prof. Dr. Dieter Klockow on the occasion of his 60th birthday  相似文献   

20.
Environmentally persistent and bioaccumulative perfluorooctanic acid (PFOA) was difficult to be decomposed under the irradiation of 254 nm UV light. However, in the presence of 80μmol/L Fe(Ⅲ), 80% of PFOA with initial concentration of 48μmol/L (20 mg/L) was effectively degraded and 47.8% of fluorine atoms in PFOA molecule were transformed into inorganic fluoride ion after 4 h reaction. Shorter chain perfluorocarboxylic acids bearing C3-C7 and fluoride ion were detected and identified by LC/MS and IC as the degradation products in the aqueous solution. It was proposed that complexes of PFOA with Fe(Ⅲ) initiated degradation of PFOA irradiated with 254 nm UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号