首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用密度泛函理论方法B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p)和导体极化连续模型B3LYP/CPCM/6-31++G(d,p)方法对苯环对位上有F取代的N,N-二(对氟苄基)-N′-(2′,3′-二脱氧-3′-硫代胞苷)甲脒(FBFA-3TC)水解反应机理和溶剂效应进行了研究. 考虑两条可能反应途径: 水分子首先进攻C=N双键的途径(Path A)和先进攻C-N单键的途径(Path B). 计算结果表明, 气相和水中两条途径的第一步都是速率控制步骤, Path A 比Path B 更有利. 对优势途径Path A的第二步反应的进一步研究发现, 中间体的羟基H原子转移到双键N比单键N更容易, 从而形成2′,3′-二脱氧-3′-硫代胞苷(3TC)的最终水解产物.  相似文献   

2.
The past few decades have witnessed extensive efforts to disclose the unique reactivity of metal–nitrenes, because they could be a powerful synthetic tool for introducing the amine functionality into unactivated chemical bonds. The reactivity of metal–nitrenes, however, is currently mainly confined to aziridination (an insertion into a C=C bond) and C−H amination (an insertion into a C−H bond). Nitrene insertion into an amide C−N bond, however, has not been reported so far. In this work we have developed a rhodium-catalyzed one-nitrogen insertion into amide C−N and sulfonamide S−N bonds. Experimental and theoretical analyses based on density functional theory indicate that the formal amide insertion proceeds via a rhodium-coordinated ammonium ylide formed between the nitrene and the amide nitrogen, followed by acyl group transfer concomitant with C−N bond cleavage. Mechanistic studies have allowed rationalization of the origin of the chemoselectivity observed between the C−H and amide insertion reactions. The methodology presented herein is the first example of an insertion of nitrene into amide bonds and provides facile access to unique diazacyclic systems with an N−N bond linkage.  相似文献   

3.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

4.
The kinetics and mechanism of the degradation reactions of substituted phenyl N-hydroxycarbamates and their N-methyl and N-phenyl analogues have been studied at pseudo-first-order reaction conditions in aqueous buffers and sodium hydroxide solutions at 20 [degree]C and 60 [degree]C and at I= 1 mol[middle dot]l(-1). The dependence of log k(obs) on pH for phenyl N-hydroxycarbamates at pH < 9 and pH > 13 is linear with the unit slope; at pH 10-12 log k(obs) is pH independent. The Bronsted coefficient [small beta](lg) is about -1 (pH 7-13) and -1.53 (pH > 13) indicating that the degradation reaction of phenyl N-hydroxycarbamates follows an E1cB mechanism giving the corresponding phenol/phenolate and HO-N[double bond, length as m-dash]C[double bond, length as m-dash]O. The latter species undergoes further decomposition to give carbonate, nitrogen and ammonia as final products. In contrast to the phenyl N-hydroxycarbamates the N-methyl derivatives at pH 7-9 undergo degradation to the corresponding phenol/phenolate, carbonate and methylamine via a concerted mechanism ([small beta](lg) is about -0.75). The only exception is 4-nitrophenyl N-hydroxy-N-methylcarbamate in which the predominant break down pathway proceeds via the Smiles rearrangement to give sodium N-methyl-(4-nitrophenoxy)carbamate. At pH > 9 the reaction of N-hydroxy-N-methylcarbamates is kinetically complex: the dependence of absorbance on time is not exponential and it proceeds as a consecutive two-step reaction. N-Hydroxy-N-phenylcarbamate under the same conditions undergoes degradation to phenol, carbonate, aniline and azoxybenzene.  相似文献   

5.
Erb J  Strull J  Miller D  He J  Lectka T 《Organic letters》2012,14(8):2191-2193
A Diels-Alder reaction between cyclopentadiene and a variety of ketenimines is reported. A copper(I)-bis(phosphine complex catalyzes the cycloaddition across the C═N bond of the ketenimine in a [4 + 2] reaction to give an enamine intermediate that is hydrolyzed upon purification to generate aminoketones.  相似文献   

6.
《化学:亚洲杂志》2017,12(12):1326-1337
A copper(I)‐mediated denitrogenative reaction has been successfully developed for the preparation of cyclic tetrapeptides. The key reactive intermediate, ketenimine, triggers intramolecular cyclization through attack of the terminal amine group to generate an internal β‐amino acid with an amidine linkage. The chemistry developed herein provides a new synthetic route for the preparation of cyclic α3β‐tetrapeptide analogues that contain important biological properties and results in rich structural information being obtained for conformational studies. With the success of this copper(I)‐catalyzed macrocyclization, two histone deacetylase inhibitor analogues consisting of the cyclic α3β‐tetrapeptide framework have been successfully synthesized.  相似文献   

7.
Treatment of trans-[PtCl4(RCN)2] (R = Me, Et, Ph, NEt2) with 2 equiv of the amidine PhC(=NH)NHPh in a suspension of MeCN (R = Me), CHCl3 (R = Et, Ph), or in CHCl3 solution (R = NEt2) results in the formation of the imidoylamidine complexes trans-[PtCl4{NH=C(R)N=C(Ph)NHPh}2] (1-4) isolated in good yields (66-84%). The reaction of soluble complexes 3 and 4 with 2 equiv of Ph3P=CHCO2Me in CH2Cl2 (40 degrees C, 5 h) leads to dehydrochlorination resulting in a chelate ring closure to furnish the platinum(IV) chelates [PtCl2{NH=C(R)NC(Ph)=NPh}2] (R = Ph, 5; R = NEt2, 6), accordingly, and the phosphonium salt [Ph3PCH2CO2Me]Cl. Treatment of 5 with 3 equiv of Ph3P=CHCO2Me at 50 degrees C for 5 d resulted in only a 30% conversion to the corresponding Pt(II) complex [Pt{NH=C(NEt2)NC(Ph)=NPh}2] (15). The reduction can be achieved within several minutes, when Ph2PCH2CH2PPh2 in CDCl3 is used. When the platinum(II) complex trans-[PtCl2(RCN)2] is reacted with 2 equiv of the amidine, the imidoylamidinato complexes [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) and [PhC(=NH)NHPh] x HCl (7) are formed. The reaction of trans-[PtCl2(RCN)2] with 4 equiv of the amidine under a prolonged reaction time or treatment of [PtCl(RCN){NH=C(R)NC(Ph)=NHPh}] (8-11) with 2 more equiv of the amidine yields the complex bearing two chelate rings [Pt{NH=C(R)NC(Ph)=NHPh}2] (12-15). The treatment of cis-[PtCl2(RCN)2] (R = Me, Et) with the amidine gives ca. 50-60% yield of [PtCl2{NH=C(R)NHC(Ph)=NHPh}] (16 and 17). All of the platinum compounds were characterized by elemental analyses; FAB mass spectrometry; IR spectroscopy; 1H, 13C{1H}, and 195Pt NMR spectroscopies, and four of them (4, 6, 8, and 15) were also characterized by X-ray crystallography. The coupling of the Pt-bound nitriles and the amidine is metal-mediated insofar as RCN and PhC(=NH)NHPh do not react in the absence of the metal centers in conditions more drastic than those of the observed reactions. The nitrile-amidine coupling reported in this work constitutes a route to the synthesis of imidoylamidine complexes, some of them exhibiting luminescent properties.  相似文献   

8.
The reaction of (Z)-HDC=CHCH(OCH(3))C(6)H(5) (1) with Cp(2)Zr(D)Cl followed by BF(3).OEt(2) gave phenylcyclopropanes 3a and 3b, both having cis deuterium. This stereochemical outcome requires inversion of configuration at the carbon bound to zirconium and is consistent with a "W-shaped" transition state structure for cyclopropane formation. In a Kulinkovich hydroxycyclopropanation, trans-3-deutero-1-methyl-cis-2-phenyl-1-cyclopropanol (5) was formed stereospecifically from Ti(O-i-Pr)(4), ethyl acetate, EtMgBr, and trans-beta-deuterostyrene. This stereochemistry requires retention of configuration at the carbon bound to titanium and is consistent with frontside attack of the carbon-titanium bond on a carbonyl group coordinated to titanium. In a de Meijere cyclopropylamine synthesis, a 3:1 mixture of N,N-dimethyl-N-(trans-3-deutero-trans-2-phenylcyclopropyl)amine (6a) and N,N-dimethyl-N-(cis-3-deutero-cis-2-phenylcyclopropyl)amine (6b) was formed from Ti(O-i-Pr)(4), DMF, Grignard reagents, and trans-beta-deuterostyrene. This stereochemistry requires inversion of configuration at the carbon bound to titanium and is consistent with a W-shaped transition structure for ring closure.  相似文献   

9.
A computational study of the mechanism for the iodine(III)‐mediated oxidative amination of alkenes explains the experimentally observed substrate dependence on product distribution. Calculations with the M06 functional have been carried out on the reaction between PhI(N(SO2Me)2)2 and three different representative substrates: styrene, α‐methylstyrene, and (E)‐methylstilbene. All reactions start with electrophilic attack by a cationic PhI(N(SO2Me)2)+ unit on the double bond, and formation of an intermediate with a single C?I bond and a planar sp2 carbocationic center. The major path, leading to 1,2‐diamination, proceeds through a mechanism in which the bissulfonimide initially adds to the alkene through an oxygen atom of one sulfonyl group. This behavior is now corroborated by experimental evidence. An alternative path, leading to an allylic amination product, takes place through deprotonation at an allylic C?H position in the common intermediate. The regioselectivity of this amination depends on the availability of the resonant structures of an alternate carbocationic intermediate. Only in cases where a high electronic delocalization is possible, as in (E)‐methylstilbene, does the allylic amination occur without migration of the double bond.  相似文献   

10.
Conclusions Study has been made of the kinetics of the reaction of p-nitrophenylbis(chloromethyl)-phosphinate with primary and secondary amines. Reaction proceeds through rupture of the ester bond at the P atom and is catalyzed by a second amine molecule. The reaction rate is determined by induction and steric effects in the amine substituents. The activation energy for the reaction with n-butylamine is negative.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1292–1295, June, 1977.  相似文献   

11.
Reaction of the antitumor complex trans-[Ru(III)Cl4(Hind)2]- (Hind = indazole) with an excess of dimethyl sulfoxide (dmso) in acetone afforded the complex trans,trans,trans-[Ru(II)Cl2(dmso)2(Hind)2] (1). Two other isomeric compounds trans,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (2) and cis,cis,cis-[Ru(II)Cl2(dmso)2(Hind)2] (3) have been obtained on refluxing cis-[Ru(II)Cl(2)(dmso)(4)] with 2 equiv. of indazole in ethanol and methanol, respectively. Isomers 1 and 2 react with acetonitrile yielding the complexes trans-[Ru(II)Cl2(dmso)(Hind){HN=C(Me)ind}].CH3CN (4.CH3CN) and trans,cis-[Ru(II)Cl2(dmso)2{HN=C(Me)ind}].H2O (5.H2O), respectively, containing a cyclic amidine ligand resulting from insertion of the acetonitrile C triple bond N group in the N1-H bond of the N2-coordinated indazole ligand in the nomenclature used for 1H-indazole. These are the first examples of the metal-assisted iminoacylation of indazole. The products isolated have been characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, electrospray mass-spectrometry, thermogravimetry, differential scanning calorimetry, 1H NMR spectroscopy, and solid-state 13C CP MAS NMR spectroscopy. The isomeric structures of 1-3 and the presence of a chelating amidine ligand in 4 and 5 have been confirmed by X-ray crystallography. The electrochemical behavior of 1-5 and the formation of 5 have been studied by cyclic voltammetry.  相似文献   

12.
Reaction of [Pd(PPh(3))(4)] with 1,1-dichloro-2,3-diarylcyclopropenes gives complexes of the type cis-[PdCl(2)(PPh(3))(C(3)(Ar)(2))] (Ar = Ph 5, Mes 6). Reaction of [Pd(dba)(2)] with 1,1-dichloro-2,3-diarylcyclopropenes in benzene gave the corresponding binuclear palladium complexes trans-[PdCl(2)(C(3)(Ar)(2))](2) (Ar = Ph 7, p-(OMe)C(6)H(4)8, p-(F)C(6)H(4)9). Alternatively, when the reactions were performed in acetonitrile, the complexes trans-[PdCl(2)(NCMe)(C(3)(Ar)(2))] (Ar = Ph 10, p-(OMe)C(6)H(4)11 and p-(F)C(6)H(4)) 12) were isolated. Addition of phosphine ligands to the binuclear palladium complex 7 or acetonitrile adducts 11 and 12 gave complexes of the type cis-[PdCl(2)(PR(3))(C(3)(Ar)(2))] (Ar = Ph, R = Cy 13, Ar = p-(OMe)C(6)H(4), R = Ph 14, Ar = p-(F)C(6)H(4), R = Ph 15). Crystal structures of complexes 6·3.25CHCl(3), 10, 11·H(2)O and 12-15 are reported. DFT calculations of complexes 10-12 indicate the barrier to rotation about the carbene-palladium bond is very low, suggesting limited double bond character in these species. Complexes 5-9 were tested for catalytic activity in C-C coupling (Mizoroki-Heck, Suzuki-Miyaura and, for the first time, Stille reactions) and C-N coupling (Buchwald-Hartwig amination) showing excellent conversion with moderate to high selectivity.  相似文献   

13.
The reaction between the platinum(IV) complex trans-[PtCl(4)(EtCN)(2)] and the amino alcohols NH(2)CH(2)CH(2)OH, NH(2)CH(2)CH(Me)OH-(R)-(-), NH(2)CH(Ph)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(R)-(-), NH(2)CH(Et)CH(2)OH-(S)-(+), and NH(2)CH(Pr(n)())CH(2)OH proceeds rapidly at room temperature in CH(2)Cl(2) to furnish the amidine complexes [PtCl(4)(HN=C(Et)NH(arcraise;)OH)(2)] (1-6) in good yield (70-80%). The related reaction between the platinum(II) complex trans-[PtCl(2)(EtCN)(2)] and monoethanolamine in a molar ratio of 1:2 in CH(2)Cl(2) results in the addition of 4 equiv of NH(2)CH(2)CH(2)OH per mole of complex to give [Pt(HN=C(Et)NHCH(2)CH(2)OH)(2)(NH(2)CH(2)CH(2)OH)(2)](2+) (7). Formulation of 1-6 is based upon satisfactory C, H, N elemental analyses, electrospray mass spectrometry, IR spectroscopy, and (1)H, (13)C((1)H), (15)N, and (195)Pt NMR spectroscopies, while the structures of trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(2)OH)(2)] (1), trans-[PtCl(4)((Z)-NH=C(Et)NHCH(2)CH(Me)OH-(R)-(-))(2)] (2), and trans-[PtCl(4)((Z)-NH=C(Et)NHCH(Et)CH(2)OH-(R)-(-))(2)] (4) were determined by X-ray single-crystal diffraction. The Z-amidine configuration of the ligands is preserved in CDCl(3) solutions as confirmed by gradient-enhanced (15)N,(1)H-HMQC spectroscopy and NOE experiments. The amidines, formed upon Pt(IV)-mediated nitrile-amino alcohol coupling, were liberated from their platinum(IV) complexes 1, 3, and 4 by reaction with Ph(2)PCH(2)CH(2)PPh(2) (dppe) giving free NH=C(Et)NHCHRCH(2)OH (R = H 8, Et 9, Ph 10), with the substituents R of different types, and dppe oxides; the P-containing species were identified by (31)P((1)H) NMR spectroscopy. NOESY spectroscopy indicates that the liberated amidines retained the same configuration relative to the C=N double bond, i.e., syn-(H,Et)-NH=C(Et)NHCHRCH(2)OH. The liberated hydroxo-functionalized amidines 8-10 were converted into oxazolines (11-13) in the presence of a catalytic amount of ZnCl(2). A similar catalytic effect has also been reached using anhydrous MSO(4) (M = Cu, Co, Cd), CdCl(2), and AlCl(3).  相似文献   

14.
The reaction between the nitrile complex trans-[PtCl(4)(EtCN)(2)] and benzohydroxamic acids RC(6)H(4)C([double bond]O)NHOH (R = p-MeO, p-Me, H, p-Cl, o-HO) proceeds smoothly in CH(2)Cl(2) at approximately 45 degrees C for 2-3 h (sealed tube) or under focused 300 W microwave irradiation for approximately 15 min at 50 degrees C giving, after workup, good yields of the imino complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] which derived from a novel metalla-Pinner reaction. The complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] were characterized by elemental analyses (C, H, N), FAB mass spectrometry, and IR and (1)H and (13)C[(1)H] spectroscopies, and [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(Ph)](2)] (as the bis-dimethyl sulfoxide solvate), by X-ray single-crystal diffraction. The latter disclosed its overall trans-configuration with the iminoacyl species in the hydroximic tautomeric form in E-configuration which is held by N[bond]H...N hydrogen bond between the imine [double bond]NH atom and the hydroximic N atom.  相似文献   

15.
The reaction of omega-chloroalkyl isocyanates Cl(CH2)nNCO (n = 2 (2), 3 (4)) and isothiocyanate Cl(CH2)2NCS (3) with active methylene compounds CH2YY' 1 in the presence of Et3N or Na give 2-YY'-methylene-1,3-oxazolidines, (E,Z)-1,3-thiazolidines, and 1,3-oxazines from 2, 3, and 4, respectively. 2-(Chloromethyl)phenyl isocyanate 8 gives with 1 the corresponding benzo-oxazines. Ethyl 2-isothiocyanatobenzoate 10 gives the corresponding benzothiazolinone, whereas the analogous isocyanate 12 gives noncyclic enols. Ethoxycarbonyl isothiocyanate 14 gives an open-chain thioenol or an enol-thioamide. The cyanoamides CH2(CN)CONHR, R = H, Me, CHPh2, give with Et3N and 2 the bicyclic imidazopyrimidinediones 16, derived from two molecules of 2, but with their preformed Na salt they give the 1,3-oxazolidines. Reaction of cyanoacetamide with 3 in the presence of Na gave a tricyclic triaza(thia)indacene, derived from two molecules of 3. A reaction mechanism involving an initial attack of the anion 1- on the N=C=X (X = O, S) moiety gives an anion 18, which cyclizes intramolecularly and after tautomerization gives the mono-ring heterocycle. With the cyanoamides, the N- site of the ambident ion 18 attacks another molecule of 2 giving the anion 20, which by intramolecular attack on the CN, followed by expulsion of the Cl- gives the bicyclic 16 after tautomerization.  相似文献   

16.
The hydrolysis reaction of N,N-dimethyl-N'-(2-oxo-1, 2-dihydro-pyrimidinyl)formamidine (DMPFA), a model compound of the antivirus drug amidine-3TC (3TC = 2', 3'-dideoxy-3'-thiacytidine), is investigated by the hybrid density functional theory B3LYP/6-31+G (d,p) method. The hydrolysis reaction of the title compound is predicted to undergo via two pathways, each of which is a stepwise process. Path A is the addition of H2O to the C=N double bond in the amidine group to form a tetrahedral structure in its first step, and then the transfer of the H atom of hydroxyl leads to the corresponding products via four possible channels. Path B simultaneously involves the nucleophilic attack of H2O to the C atom of the C=N bond and the proton transfer to the N atom of amino group leading to the cleavage of the C-N single bond in the amidine group. The results indicate that path A is more favorable than path B in the gas phase. Moreover, to simulate the title reaction in aqueous solution, water-assisted mechanism and the cluster-continuum model, based on the SCRF/CPCM model, are taken into account in our work. The results indicate that it is rational for two water molecules served as a bridge to assist in the first step of path A and that cytosine rather than the cytosine-substituted formamide should be released from the tetrahedral intermediate via s six-membered cycle transition state (channel 2). Our calculations exhibit that the process toward the tetrahedral intermediate is the rate-determining step both in the gas phase and in aqueous solution.  相似文献   

17.
Wong CY  Lee FW  Che CM  Cheng YF  Phillips DL  Zhu N 《Inorganic chemistry》2008,47(22):10308-10316
trans-[Ru(16-TMC)(C[triple bond]N)2] (1; 16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane) was prepared by the reaction of trans-[Ru(16-TMC)Cl2]Cl with KCN in the presence of zinc powder. The oxidation of 1 with bromine gave trans-[Ru(16-TMC)(CN)2]+ isolated as PF6 salt (2.PF6). The Ru-C/C-N distances are 2.061(4)/1.130(5) and 2.069(5)/1.140(7) A for 1 and 2, respectively. Both complexes show a Ru(III/II) couple at 0.10 V versus FeCp2+/0. The UV-vis absorption spectrum of 1 is dominated by an intense high-energy absorption at lambda(max) = 230 nm, which is mainly originated from dpi(RuII) --> pi*(N[triple bond]C-Ru-C[triple bond]N) charge-transfer transition. Complex 2 shows intense absorption bands at lambda(max) pi*(N[triple bond]C-Ru-C[triple bond]N) and sigma(-CN) --> d(RuIII) charge-transfer transition, respectively. Density functional theory and time-dependent density-functional theory calculations have been performed on trans-[(NH3)4Ru(C[triple bond]N)2] (1') and trans-[(NH3)4Ru(C[triple bond]N)2]+ (2') to examine the Ru-cyanide interaction and the nature of associated electronic transition(s). The 230 nm band of 1 has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nuC[triple bond]N stretch mode accounts for ca. 66% of the total vibrational reorganization energy. A change of nominal bond order for the cyanide ligand from 3 to 2.5 is estimated upon the electronic excitation.  相似文献   

18.
Phosphagermaallene Tip(tBu)Ge=C=PMes* 1 (Tip=2,4,6-triisopropylphenyl, Mes*=2,4,6-tri-tert-butylphenyl) reacts with phenyl isocyanate and tert-butyl isocyanate by a [2+2] cycloaddition that involves the Ge=C and C=O double bonds to afford 1-oxa-2-germacyclobutanes 2 and 3. With N,N'-dicyclohexylcarbodiimide, a [2+2] cycloaddition is observed between the Ge=C and C=N unsaturations to lead to 1-aza-2-germacyclobutane 6 with exocyclic P=C and C=N double bonds. In sharp contrast, 1 reacts with phenyl isothiocyanate, ethyl isothiocyanate, and carbon disulfide according to a [3+2] cycloaddition that involves the whole Ge=C=P unit and the C=S double bond to give transient phosphagermacarbenes (PGeHCs) 11, 12, and 13. These new PGeHCs undergo C-H insertions into one o-tBu group of Mes* (in the case of 11 and 12) or one o-iPr group of Tip (in the case of 13) with formation of tricyclic compounds 8, 9, and 10, respectively. The reaction mechanisms that involve 1 and the phenyl isocyanate and the phenyl isothiocyanate are described and their regioselectivity is explained by theoretical calculations.  相似文献   

19.
Treatment of two precursors, fac-[Re(CO)(3)(L)(CH(3)CN)]BF(4) [L = 5,5'-dimethyl-2,2'-bipyridine (5,5'-Me(2)bipy) (1) and 6,6'-dimethyl-2,2'-bipyridine (6,6'-Me(2)bipy) (2)], with five C(2)-symmetrical saturated heterocyclic amines yielded 10 new amidine complexes, fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) [Y = CH(2), (CH(2))(2), (CH(2))(3), NH, or O]. All 10 complexes possess the novel feature of having only one isomer (amidine E configuration), as established by crystallographic and (1)H NMR spectroscopic methods. We are confident that NMR signals of the other possible isomer (amidine Z configuration) would have been detected, if it were present. Isomers are readily detected in closely related amidine complexes because the double-bond character of the amidine C-N3 bond (N3 is bound to Re) leads to slow E to Z isomer interchange. The new fac-[Re(CO)(3)(L)(HNC(CH(3))N(CH(2)CH(2))(2)Y)]BF(4) complexes have C-N3 bonds with essentially identical double-bond character. However, the reason that the Z isomer is so unstable as to be undetectable in the new complexes is undoubtedly because of unfavorable clashes between the equatorial ligands and the bulky N(CH(2)CH(2))(2)Y ring moiety of the axial amidine ligand. The amidine formation reactions in acetonitrile (25 °C) proceeded more easily with 2 than with 1, indicating that the distortion in 6,6'-Me(2)bipy resulting from the proximity of the methyl substituents to the inner coordination sphere enhanced the reactivity of the coordinated CH(3)CN. Reaction times for 1 and 2 exhibited a similar dependence on the basicity and ring size of the heterocyclic amine reactants. Moreover, when the product of the reaction of 1 with piperidine, fac-[Re(CO)(3)(5,5'-Me(2)bipy)(HNC(CH(3))N(CH(2)CH(2))(2)CH(2))]BF(4), was challenged in acetonitrile-d(3) or CDCl(3) with a 5-fold excess of the strong 4-dimethylaminopyridine ligand, there was no evidence for replacement of the amidine ligand after two months, thus establishing that the piperidinylamidine ligand is a robust ligand. This chemistry offers promise as a suitable means for preparing isomerically pure conjugated fac-[(99m)Tc(CO)(3)L](n±) imaging agents, including conjugates with known bioactive heterocyclic amines.  相似文献   

20.
The synthesis and spectroscopic properties of trans-[RuL4(C[triple bond]CAr)2] (L4 = two 1,2-bis(dimethylphosphino)ethane, (dmpe)2; 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, 16-TMC; 1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane, N2O2) are described. Investigations into the effects of varying the [RuL4] core, acetylide ligands, and acetylide chain length for the [(-)C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph] and [(-)C[triple bond]C(C6H4)(n-1)Ph] (n = 1-3) series upon the electronic and electrochemical characteristics of trans-[RuL4(C[triple bond]CAr)2](0/+) are presented. DFT and TD-DFT calculations have been performed on trans-[Ru(L')4(C[triple bond]CAr)2](0/+) (L' = PH3 and NH3) to examine the metal-acetylide pi-interaction and the nature of the associated electronic transition(s). It was observed that (1) the relationship between the transition energy and 1/n for trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)(n-1)Ph}2] (n = 1-3) is linear, and (2) the sum of the d(pi)(Ru(II)) --> pi*(C[triple bond]CAr) MLCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2] and the pi(C[triple bond]CAr) --> d(pi)(Ru(III)) LMCT energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]+ corresponds to the intraligand pi pi* absorption energy for trans-[Ru(16-TMC or N2O2)(C[triple bond]CAr)2]. The crystal structure of trans-[Ru(dmpe)2{C[triple bond]C(C6H4C[triple bond]C)2Ph}2] shows that the two edges of the molecule are separated by 41.7 A. The electrochemical and spectroscopic properties of these complexes can be systematically tuned by modifying L4 and Ar to give E(1/2) values for oxidation of trans-[RuL4(C[triple bond]CAr)2] that span over 870 mV and lambda(max) values of trans-[RuL4(C[triple bond]CAr)2] that range from 19,230 to 31,750 cm(-1). The overall experimental findings suggest that the pi-back-bonding interaction in trans-[RuL4(C[triple bond]CAr)2] is weak and the [RuL4] moiety in these molecules may be considered to be playing a "dopant" role in a linear rigid pi-conjugated rod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号