首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The magnetically perturbed time-dependent density functional theory is used to derive equations for the magnetic circular dichroism (MCD) of degenerate transitions of closed shell molecules. The MCD of this type of transition can be divided into two contributions. The dominant contribution is usually that from A terms that arise because of the breaking of the degeneracy of the excited state in the presence of the magnetic field. The second contribution comes from B terms that arise because of the perturbation of the transition dipole by the magnetic field. The formalism is applied to ten tetrahedral d(0) transition metal oxy- and thioanions. The MCD parameters of these systems are reproduced quite well by the calculations. Simulated spectra derived from the calculated parameters are in good agreement with the observed spectra.  相似文献   

2.
An elaborate approach for the prediction of magnetic circular dichroism (MCD) spectra in the framework of highly correlated multiconfigurational ab initio methods is presented. The MCD transitions are computed by the explicit treatment of spin-orbit coupled (SOC) and spin-spin coupled (SSC) N-electron states. These states are obtained from the diagonalization of the SOC and SSC operators along with the spin and orbital Zeeman operators in the basis of a preselected number of roots of the spin-free Hamiltonian. Therefore, zero-field splittings due to the SOC and SSC interactions along with the magnetic field splittings are explicitly accounted for in the ground as well as the excited states. This makes it possible to calculate simultaneously all MCD A, B, and C terms even beyond the linear response limit. The SOC is computed using a multicenter mean-field approximation to the Breit-Pauli Hamiltonian. Two-electron SSC terms are included in the treatment without further approximations. The MCD transition intensities are subjected to numerical orientational averaging in order to treat the most commonly encountered case of randomly oriented molecules. The simulated MCD spectra for the OH, NH, and CH radicals as well as for [Fe(CN)(6)](3-) are in good agreement with the experimental spectra. In the former case, the significant effects of the inert gas matrices in which the experimental spectra were obtained were modeled in a phenomenological way.  相似文献   

3.
The MCD spectra of pyrrole, furan, thiophene, selenophene and teburophene and some of their derivatives are reported and the corresponding energies, oscillator strengths, transition moment directions, and MCD terms are calculated from semi-empirical quantum mechanical calculations hi the π-electron approximation. The MCD spectrum of thiophene is only slightly perturbed by substituents, and this is also expected to be true of the quite similar MCD spectra of selenophene and tellurophene. These molecules can then be classified as “hard” chromophores. On the other hand, pyrrole and furan have different and much weaker MCD spectra which change shape considerably when substituents are introduced. The implications of these observations are further discussed.  相似文献   

4.
Magnetic circular dichroism (MCD) spectroscopy has been established as a convenient method to study electronic structure, in particular for small symmetric organic molecules. Newer applications on more complex systems are additionally stimulated by the latest availability of precise quantum‐chemical techniques for the spectral simulations. In this work, a sum over states (SOS) summation is reexamined as an alternative to the derivative techniques for the MCD modeling. Unlike in previous works, the excited electronic states are calculated by the time‐dependent density functional theory (TDDFT). A gradient formulation of the MCD intensities is also proposed, less dependent on the origin choice than the standard expressions. The dependencies of the results on the basis set, number of electronic states, and coordinate origin are tested on model examples, including large symmetric molecules with degenerate electronic states. The results suggest that the SOS/TDDFT approach is a viable and accurate technique for spectral simulation. It may even considerably reduce the computational time, if compared with the traditional MCD computational procedures based on the response theory. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The first magnetic circular dichroism (MCD) spectra are reported for tetraphenyltetraacenaphthoporphyrin (TPTANP). The impact on the electronic structure of steric interactions between the fused acenaphthalene rings and the meso-tetraphenyl substituents is explored based on an analysis of the optical spectra of the Zn(II) complex (ZnTPTANP) and the free base dication species ([H4TPTANP]2+). In the case of ZnTPTANP, significant folding of the porphyrinoid ligand induces a highly unusual MCD-sign reversal providing the first direct spectroscopic evidence of ligand nonplanarity. Density functional theory (DFT) geometry optimizations for a wide range of Zn(II) porphyrinoids based on the B3LYP functional and TD-DFT calculations of the associated UV-visible absorption spectra are reported, allowing a complete assessment of the MCD data. TPTANP complexes are found to fall into a class of cyclic polyenes, termed as soft MCD chromophores by Michl (J. Pure Appl. Chem. 1980, 52, 1549.), since the signs of the Faraday A1 terms observed in the MCD spectrum are highly sensitive to slight structural changes. The origin of an unusually large red shift of the main B (or Soret) band of MTPTANP (the most red shifted ever reported for fused-ring-expanded metal porphines) and of similar red shifts observed in the spectra of other peripherally crowded porphyrinoid complexes is also explored and explained on this basis.  相似文献   

6.
A time-dependent density functional theory (TDDFT) formalism with damping for the calculation of the magnetic optical rotatory dispersion and magnetic circular dichroism (MCD) from the complex Verdet constant is presented. For a justification of such an approach, we have derived the TDDFT analog of the sum-over-states formula for the Verdet constant. The results of the MCD calculations by this method for ethylene, furan, thiophene, selenophene, tellurophene, and pyrrole are in good agreement with our previous theoretical sum-over-states MCD spectra. For the pi-->pi(*) transition of propene, we have obtained a positive Faraday B term. It is located between the two negative B terms. This finding is in agreement with experiment in the range of 6-8 eV.  相似文献   

7.
8.
We present here simulated magnetic circular dichroism (MCD) spectra of MTAP (M=Mg, Ni, Zn) and MPc (M=Mg, Zn) where TAP=tetraazaporphyrin and Pc=phthalocyanine. The study is based on magnetically perturbed time-dependent density functional theory (MP-TDDFT) and a newly implemented method for the calculation of A and B terms from the theory of MCD. It follows from our investigation that the MCD spectrum for the MTAP and MPc systems in the Q-band region consists of a single positive A term augmented by a positive B term, in agreement with experiment where available. The Q band can be fully characterized in terms of the 2a1u-->2eg one-electron excitation. For the aza systems MgTAP and ZnTAP, the simulated MCD spectra in the Soret region are dominated by the two one-electron excitations 2a2u-->2eg and 1a2u-->2eg and has the appearance of a positive A term (with values between 1.33-1.55, depending on the MTAP system) made asymmetric by a negative B term, in good agreement with experiment. We find, in agreement with all available experimental findings on MPc (M=Mg, Zn) type systems, that the MCD spectra in the Soret region are dominated by two transitions with positive A/ D-term values and two negative B/ D-term values. The major contribution to the two transitions comes from the 2a2u-->2eg and 1a2u-->2eg one-electron excitations. It appears that the ratio of A/ B for the term parameters is underestimated by theory.  相似文献   

9.
Statistical-mechanical integral equation theory, an approximate methodology for computing distribution functions and thermodynamic properties of the liquid state, can be advantageously combined with molecular simulations to overcome inherent limitations of both approaches. This Concept discusses a number of conceptual applications that illustrate the capabilities of hybrid models: A study of complex formation in solution by explicit simulation of only the solute molecules, the correction of artefacts induced by truncated potentials, and an approach to the direct computation of free energies from a simulation of a single state.  相似文献   

10.
We apply the adiabatic time-dependent density functional theory to magnetic circular dichroism (MCD) spectra using the real-space, real-time computational method. The standard formulas for the MCD response and its A and B terms are derived from the observables in the time-dependent wave function. We find real-time method is well suited for calculating the overall spectrum, particularly at higher excitation energies where individual excited states are numerous and overlapping. The MCD sum rules are derived and intepreted in the real-time formalism; we find that they are very useful for normalization purposes and assessing the accuracy of the theory. The method is applied to MCD spectrum of C(60) using the adiabatic energy functional from the local density approximation. The theory correctly predicts the signs of the A and B terms for the lowest allowed excitations. However, the magnitudes of the terms only show qualitative agreement with experiment.  相似文献   

11.
支撑磷脂双层膜(supported phospholipid bilayers,SPBs)是细胞膜研究中普及的模型,是固定生物活性物质的理想材料,不仅可以保持生物分子的活性,还能有效抑制其他生物分子的非特异性吸附,在跨膜蛋白、仿生膜、水处理、生物医学和生物传感器等研究领域具有广泛的应用前景。本文介绍了支撑磷脂双层膜的表征方法和制备方法,包括Langmuir Blodgett(LB)膜提拉法、囊泡融合法和LB膜提拉法与囊泡融合联合法;详细阐述了囊泡融合法制备SPBs的机理;综述了囊泡融合法制备SPBs的影响因素,包括囊泡浓度、缓冲溶液、温度、囊泡和基底表面电荷等因素;列举了支撑磷脂膜的应用,并展望了支撑磷脂双层膜的研究趋势。  相似文献   

12.
首次采用动态光散射研究了气相扩散法生长溶菌酶晶体.实验中采用了两种溶解溶菌酶的方法,所得实验结果是有区别的.这种区别表明了NaCl对溶菌酶分子间相互作用产生十分重要的影响.实验结果表明,晶体生长过程中,溶液中溶菌酶始终保持单分子与两分子聚集体的状态,这种状态是生长晶体的基础.  相似文献   

13.
Protein cage nanoparticles (PCNs) are attractive platforms for developing functional nanomaterials using biomimetic approaches for functionalization and cargo encapsulation. Many strategies have been employed to direct the loading of molecular cargos inside a wide range of PCN architectures. Here we demonstrate the exploitation of a metal-ligand coordination bond with respect to the direct packing of guest molecules on the interior interface of a virus-like PCN derived from Salmonella typhimurium bacteriophage P22. The incorporation of these guest species was assessed using mass spectrometry, multiangle laser light scattering, and analytical ultracentrifugation. In addition to small-molecule encapsulation, this approach was also effective for the directed synthesis of a large macromolecular coordination polymer packed inside of the P22 capsid and initiated on the interior surface. A wide range of metals and ligands with different thermodynamic affinities and kinetic stabilities are potentially available for this approach, highlighting the potential for metal-ligand coordination chemistry to direct the site-specific incorporation of cargo molecules for a variety of applications.  相似文献   

14.
SOLAR SPECTRAL IRRADIANCE IN THE VISIBLE AND INFRARED REGIONS   总被引:1,自引:0,他引:1  
Abstract— The analytical formulas previously developed for estimating the spectral irradiance reaching the ground in the ultraviolet are extended into the visible and infrared(350–3000 nm). This approach has two distinct features: (1) all physical inputs for calculating the direct irradiance are given in analytical form, and (2) the diffuse spectral irradiance (skylight) is calculated using dimensionless ratios which relate it to the direct irradiance. In common with other approaches, the global spectral irradiance for arbitrary ground reflectivity is calculated from the sum of the direct and diffuse spectral irradiances and a divisor which depends upon the ground and air spectral reflectivities. The global spectral irradiance on a tilted surface may also be calculated in terms of the above quantities and two angles. As in the case of the ultraviolet, the formulas presented are intended for photobiological applications.  相似文献   

15.
The 15N chemical shifts of metronidazole (1), secnidazole (2), nimorazole (3) and tinidazole (4), radiosensitizers based on the 5-nitroimidazole motif, are reported. A detailed computational study of 1 is presented, calling special attention to the performance of various theoretical methods in reproducing the 13C and 15N data observed in solution. The most sophisticated approach involves density functional-based Car-Parrinello molecular dynamics simulations (CPMD) of 1 in aqueous solution (BP86 level) and averaging chemical shifts over snapshots from the trajectory. In the NMR calculations for these snapshots (performed at the B3LYP level), a small number of discrete water molecules are retained, and the remaining bulk solution effects are included via a polarizable continuum model (PCM). A similarly good accord with experiment is obtained from much less involved, static geometry optimization and NMR computation of pristine 1 employing a PCM approach. Solvent effects on delta(15N), which are of the order of up to 20 ppm, are not due to changes in geometric parameters upon solvation, but arise from the direct response of the electronic wavefunction to the presence of the solvent, which can be represented by discrete molecules and/or the dielectric bulk.  相似文献   

16.
It was realized recently that various phenomena, related to the sorption of small molecules in polymer glasses could be described within the framework of a site distribution (SD) model. According to the SD model, non-equilibrium structure of glassy polymer leads to the distribution of sorption energies within the interchain holes. The parameters of the distribution for the given polymer–gas system could be expressed through the polymer–gas characteristics or evaluated from the experimental pressure–concentration isotherms. In this work we show how these parameters could be used to predict the sorption isotherms for gas mixtures. The suppression of solubility of each component by the other components, which is the main feature of mixed sorption by polymer glasses can be described within the SD model through the competitive occupancy of low-energy sorption sites. The clear physical meaning of the energy distribution parameters allows to analyze the role of different factors on the competitive sorption from gas mixtures. The comparison of SD model with the other theoretical approaches are given and new experiments, which could check the validity of our approach are proposed.  相似文献   

17.
The SASP (semianalytical stochastic perturbations) method is an original mixed macro-nano-approach dedicated to the mass equilibrium of multispecies phases, periphases, and interphases. This general method, applied here to the reflexive relation C(k)<=>mu(k) between the concentrations C(k) and the chemical potentials mu(k) of k species within a fluid in equilibrium, leads to the distribution of the particles at the atomic scale. The macroaspects of the method, based on analytical Taylor's developments of chemical potentials, are intimately mixed with the nanoaspects of molecular mechanics computations on stochastically perturbed states. This numerical approach, directly linked to definitions, is universal by comparison with current approaches, DLVO Derjaguin-Landau-Verwey-Overbeek, grand canonical Monte Carlo, etc., without any restriction on the number of species, concentrations, or boundary conditions. The determination of the relation C(k)<=>mu(k) implies in fact two problems: a direct problem C(k)=>mu(k) and an inverse problem mu(k)=>C(k). Validation of the method is demonstrated in case studies A and B which treat, respectively, a direct problem and an inverse problem within a free saturated gypsum solution. The flexibility of the method is illustrated in case study C dealing with an inverse problem within a solution interphase, confined between two (120) gypsum faces, remaining in connection with a reference solution. This last inverse problem leads to the mass equilibrium of ions and water molecules within a 3 A thick gypsum interface. The major unexpected observation is the repulsion of SO(4) (2-) ions towards the reference solution and the attraction of Ca(2+) ions from the reference solution, the concentration being 50 times higher within the interphase as compared to the free solution. The SASP method is today the unique approach able to tackle the simulation of the number and distribution of ions plus water molecules in such extreme confined conditions. This result is of prime importance for all coupled chemical-mechanical problems dealing with interfaces, and more generally for a wide variety of applications such as phase changes, osmotic equilibrium, surface energy, etc., in complex chemical-physics situations.  相似文献   

18.
The analytic energy gradients of the optimized effective potential (OEP) method in density-functional theory are developed. Their implementation in the direct optimization approach of Yang and Wu [Phys. Rev. Lett. 89, 143002 (2002)] and Wu and Yang [J. Theor. Comput. Chem. 2, 627 (2003)] are carried out and the validity is confirmed by comparison with corresponding gradients calculated via numerical finite difference. These gradients are then used to perform geometry optimizations on a test set of molecules. It is found that exchange-only OEP (EXX) molecular geometries are very close to the Hartree-Fock results and that the difference between the B3LYP and OEP-B3LYP results is negligible. When the energy is expressed in terms of a functional of Kohn-Sham orbitals, or in terms of a Kohn-Sham potential, the OEP becomes the only way to perform density-functional calculations and the present development in the OEP method should play an important role in the applications of orbital or potential functionals.  相似文献   

19.
A theoretical method for calculating magnetic circular dichroism (MCD) of molecules is presented. We examined the numerical accuracy and the stability of the finite perturbation (FP) method and the sum-over-state (SOS) perturbation method. The relativistic effects are shown to be important for the MCD spectra of molecules containing heavy elements. Calculations using the FP and the SOS methods were carried out for ethylene, para- and ortho-benzoquinone, showing that the FP method is superior to the SOS method, as expected. The relativistic effect was examined using the second-order Douglas-Kroll Hamiltonians for the halogen molecules F2, Cl2, Br2, and I2. The Faraday terms of I2 and Br2 were strongly affected by the relativistic effects, while the effect was negligible for Cl2 and F2.  相似文献   

20.
In this paper, we discuss the electronic structure of alkali dimer molecules in 3Pig states on the surface of a helium droplet. The perturbation due to the droplet will in general not satisfy rotational symmetry around the internuclear axis of the diatom and thus, in addition to a broadening and blue shift, will cause a splitting of electronic levels that are degenerate in the free molecules. We propose a model based on general symmetry arguments and on a small number of physically reasonable parameters. We demonstrate that such a model accounts for the essential features of laser-induced fluorescence (LIF) and magnetic circular dichroism (MCD) spectra of the (1)3Pig-a3Sigma+ transition of Rb2 and K2. Furthermore the MCD spectra, analyzed according to the approach of Langford and Williamson [J. Phys. Chem. A 1998, 102, 2415], allow a determination of the populations of Zeeman sublevels in the ground state and thus a measurement of the surface temperature of the droplet. The latter agrees with the accepted temperature, 0.37 K, measured in the interior of a droplet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号