首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We use a coarse-grained Monte Carlo model to further investigate the association of polymers with carbon nanotubes (CNTs). Previous studies have shown ordered helical wrapping conformations for a range of investigated parameters. Such adsorbed conformations allow the polymers to spiral up and down the surface of the nanotube, retaining their helical state. We analyze the helical pitch of such conformations, and relate it to nanotube radius and chain stiffness using a simple model. The model reveals that the helical pitch is approximately determined by the matching between the radius of curvature of the helix with the average bending angle of the polymer, determined by its persistence length. In addition, we simulate adsorption of block and triblock copolymers (BCPs) whose different blocks are differentiated by their degree of association with the nanotube (hydrophobic or polar). The hydrophobic blocks of the copolymers initially adsorb in both helical and random conformations of the hydrophobic block, depending on which part of the chain (center or ends) adsorbs first on the CNTs surface. In both configurations, however, the polar block extends away from the nanotube, forming loops and tails for triblock and diBCPs, respectively. Such configurations may improve the interfacial adhesion in polymer–CNTs composites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2711–2718, 2008  相似文献   

2.
Understanding formation mechanisms of hybrids of carbon nanotubes (CNTs) wrapped by polymers and their interactions is critical in modifying solubility of CNTs in aqueous solution and developing new nanotube-based polymer materials. In the present work, we investigate the structural details of poly(styrene-co-sodium styrene sulfonate) (PSS) wrapping around the CNT and the interactions between the PSS chain and the CNT using molecular dynamics (MD) simulations. The fraction of sulfonated groups significantly influences the wrapping conformations of the PSS chain. Due to limited time scale in the MD simulations, two different initial conformations of the chains are introduced to explore the effect of the initial state on the wrapping behavior. When the chains initially wrap around the CNT in a perfect helix manner, more compact pseudo-helical conformations are obtained. For initial straight line arrangement of the chain monomers, the chains adopt looser wrapping conformations. The free-energy analysis and binding interaction of the PSS chain on the CNT surface take a glance on the relationship between the conformational transition of the chain and the energy evolution.  相似文献   

3.
The adsorption and wrapping process of a single flexible comb-like polymer to a single wall nanotube was studied by Molecular Dynamics simulation of a coarse-grained model. We varied the grafting density and length of the side chains, the radius of the nanotube and strength of interaction between the monomers of nanotube and side chains of polymer brush. We investigated the structural and dynamical characters of interactions of the nanotube-polymer composite, such as the effect of Lennard-Jones energy parameter ɛLJ and the nanotube radius on the adsorption behavior and how the wrapping conformation is affected by the structure of the polymer brush. The simulation results indicate that single comb-like polymer with flexible backbone tends to adsorb and wrap around the nanotube, when the interaction energy exceeds a critical value. The monomer adsorption ratio, interaction energy profiles and moment of inertia are obtained. The helical wrapping only occurs when the interaction energy is large enough. Also, the influence of the polymer structure on the conformational behavior is analyzed. This work underscores design elements important for engineering well-defined nanotube-polymer nanocomposite.  相似文献   

4.
Structural changes of fibrinogen after adsorption to polystyrene (PS) were examined at the PS/protein solution interface in situ using sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Different behaviors of hydrophobic side chains and secondary structures of adsorbed fibrinogen molecules have been observed. Our results indicate that upon adsorption, the hydrophobic PS surface induces fast structural changes of fibrinogen molecules by aligning some hydrophobic side chains in fibrinogen so that they face to the surface. Such structural changes of fibrinogen hydrophobic side chains are local changes and do not immediately induce significant changes of the protein secondary structures. Our research also shows that the interactions between adsorbed fibrinogen and the PS surface can induce significant changes of protein secondary structures or global conformations which occur on a much longer time scale.  相似文献   

5.
We report a new nonwrapping approach to noncovalent engineering of carbon nanotube surfaces by short, rigid functional conjugated polymers, poly(aryleneethynylene)s. Our technique not only enables the dissolution of various types of carbon nanotubes in organic solvents, which represents the first example of solubilization of carbon nanotubes via pi-stacking without polymer wrapping, but could also introduce numerous neutral and ionic functional groups onto the carbon nanotube surfaces.  相似文献   

6.
While alkanes in solution exhibit predominantly extended conformations, nanoscale confinement of these chains within protein binding sites and synthetic receptors can significantly alter the conformer distribution. As a simple model for the effect of confinement on the conformation, we report molecular simulations of n-alkanes absorbed from a bulk solvent into narrow carbon nanotubes. We observe that confinement of butane, hexane, and tetracosane induces a trans to gauche conformational redistribution. Moreover, confined hexane and tetracosane exhibit cooperative interactions between neighboring dihedral angles, which promote a helical gauche conformation for the portions of the chain within the nanotube. Hexane absorbed into the nanotube from water or benzene exhibits essentially the same conformation regardless of the bulk solvent. The PMF between the nanotube and hexane along the central nanotube axis finds that nanotube absorption is favorable from aqueous solution but neutral from benzene. The interaction between hexane and the nanotube in water is dominated by the direct interaction between the alkane and the nanotube and weakly opposed by indirect water-mediated forces. In benzene, however, the direct alkane/nanotube interaction is effectively balanced by the indirect benzene-mediated interaction. Our simulations in water stand in difference to standard interpretations of the hydrophobic effect, which posit that the attraction between non-polar species in water is driven by their mutual insolubility.  相似文献   

7.
We considered two model systems of star-branched polymers near an impenetrable surface. The model chains were constructed on a simple cubic lattice. Each star polymer consisted of f = 3 arms of equal length and the total number of segments was up to 799. The excluded volume effect was included into these models only and therefore the system was studied at good solvent conditions. In the first model system polymer chain was terminally attached with one arm to the surface. The grafted arm could slide along the surface. In the second system the star-branched chain was adsorbed on the surface and the strength of adsorption was were varied. The simulations were performed using the dynamic Monte Carlo method with local changes of chain conformations. The internal and local structures of a polymer layer were determined. The lateral diffusion and internal mobility of star-branched chains were studied as a function of strength of adsorption and the chain length. The lateral diffusion and internal mobility of star-branched chains were studied as a function of strength of adsorption and the chain length. It was shown that the behavior of grafted and weakly adsorbed chains was similar to that of a free three-dimensional polymer, while the strongly adsorbed chains behave as a two-dimensional system.  相似文献   

8.
A simple strategy for the fabrication of multiwalled carbon nanotubes (MWNTs)–nanocrystal (NC) heterostructures is shown. Different nanoparticles can be covalently coupled to functionalized carbon nanotubes (CNTs) in a uniform and controllable manner. MWNTs have been functionalized by a polymer wrapping—technique that is non-invasive, and does not introduce defects to the structure of CNTs; the polymer is noncovalently adsorbed on the MWNT's surface. Moreover, this method ensures good dispersion and high stability in any commonly used organic or inorganic solvent. In this manner, our strategy allows the attachment of various colloidal nanoparticles to CNTs, independent of their surface properties, i.e. hydrophilic or hydrophobic.  相似文献   

9.
We have studied layer-by-layer polyelectrolyte self-assembly on pristine individual single-wall carbon nanotubes as a function of solution ionic strength. We report the existence of an ionic strength threshold for the deposition, below which the majority of nanotubes remain uncoated. Once the ionic strength reaches the threshold value, the majority of the individual nanotubes become coated with polyelectrolytes. Our results indicate that the self-assembly process likely involves wrapping of polymer chains around nanotubes and that the polymer chain's ability to bend in order to accommodate the nanotube curvature is one of the critical parameters controlling layer-by-layer electrostatic self-assembly on these one-dimensional templates.  相似文献   

10.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

11.
Molecular dynamics simulations of rigid, defect-free single-walled carbon nanotubes have previously suggested that the transport diffusivity of gases adsorbed in these materials can be orders of magnitude higher than any other nanoporous material (A. I. Skoulidas et al., Phys. Rev. Lett. 2002, 89, 185901). These simulations must overestimate the molecular diffusion coefficients because they neglect energy exchange between the diffusing molecules and the nanotube. Recently, Jakobtorweihen et al. have reported careful simulations of molecular self-diffusion that allow nanotube flexibility (Phys. Rev. Lett. 2005, 95, 044501). We have used the efficient thermostat developed by Jakobtorweihen et al. to examine the influence of nanotube flexibility on the transport diffusion of CH4 in (20,0) and (15,0) nanotubes. The inclusion of nanotube flexibility reduces the transport diffusion relative to the rigid nanotube by roughly an order of magnitude close to zero pressure, but at pressures above about 1 bar the transport diffusivities for flexible and rigid nanotubes are very similar, differing by less than a factor or two on average. Hence, the transport diffusivities are still extremely large compared to other known materials when flexibility is taken into account.  相似文献   

12.
We used force-field-based molecular dynamics to study the interaction between polymers and carbon nanotubes (CNTs). The intermolecular interaction energy between single-walled carbon nanotubes and polymers was computed, and the morphology of polymers adsorbed to the surface of nanotubes was investigated. Furthermore, the "wrapping" of nanotubes by polymer chains was examined. It was found that the specific monomer structure plays a very important role in determining the strength of interaction between nanotubes and polymers. The results of our study suggest that polymers with a backbone containing aromatic rings are promising candidates for the noncovalent binding of carbon nanotubes into composite structures. Such polymers can be used as building blocks in amphiphilic copolymers to promote increased interfacial binding between the CNT and a polymeric matrix.  相似文献   

13.
Purification of single-walled carbon nanotubes using conjugated polymers to selectively disperse either semiconducting or metallic nanotubes is effective and has received significant attention. However, the interaction between the conjugated polymer and the nanotube surface is very strong, making it difficult to remove the adsorbed polymer. Here, we report a poly(carbazole-co-terephthalate) polymer that is not only selective for semiconducting carbon nanotubes but can also be largely removed from the nanotube surface via irradiation with UV light. Irradiation of the polymer-nanotube dispersion causes degradation of ester linkages in the polymer backbone, effectively cutting the polymer into fragments that no longer bind strongly to the nanotube surface. Characterization of the electronic nature of the samples was carried out via the combination of absorption, Raman, and fluorescence spectroscopy. In addition, thermogravimetric analysis allowed determination of the amount of polymer left on the nanotube surface after irradiation and indicated that a large proportion of the polymer is removed. The reported methodology opens new possibilities for purification of semiconducting single-walled carbon nanotubes and their isolation from the polymeric dispersant.  相似文献   

14.
This paper presents a concise review of the experimental and calculated data reported in the literature on the noncovalent interactions of DNA and proteins with the nonfunctionalized carbon nanotubes. Our Raman scattering and electron microscopy data on carbon nanotubes and SEIRA spectral data on changes in the conformational state of the main biological polymers (DNA, Poly, BSA, and RNase) in reactions with single-shell carbon nanotubes allowed us to define the character of noncovalent interactions in the tube biomolecule system. An analysis of the data showed that reactions of DNA with nanotubes lead to the binding on the surface of the nanotube and form stable complexes with van der Waals interactions, in which stacking plays the major role and which changes the hydrogen bonds in the biological molecule with structure rearrangements. Albumin and RNase are presumably adsorbed at the conventional binding sites of these proteins on the nanotube with participation of hydrophobic interaction and π stacking, as indicated by structure rearrangements in proteins.  相似文献   

15.
We discuss in a qualitative way the physical background of a recently developed polymer adsorption theory, in which all the possible chain conformations for interacting chain molecules near an adsorbing interface are taken into account. Any conformation is described as a step-weighted random walk in a lattice. Each step is weighted according to a segmental weighting factor that contains the adsorption energy (for segments in contact with the surface), the entropy of mixing, and the attraction or repulsion between segments and solvent molecules. A suitable computing method is used to calculate the contribution of all chain conformations to the concentration profile, to the adsorbed amount, to the fraction of trains, loops and tails, to the layer thickness, etc. The theory is valid for any chain length and any concentration in the solution.Results for various chain lengths are given. Oligomers have a low affinity for the surface, whereas polymer adsorption isotherms are of the well known high affinity type. Three concentration regimes can be distinguished. In (extremely) dilute solutions the molecules on the surface adsorb as isolated chains (the Henry region).  相似文献   

16.
The adsorption of hydrophobically modified polyelectrolytes derived from poly(maleic anhydride-alt-styrene) (P(MA-alt-St)) containing in their side chain aryl-alkyl groups onto amino- or methyl-terminated silicon wafers was investigated. The effect of the spacer group, the chemical nature of the side chain, molecular weight of polyelectrolyte, and ionic strength of solution on the polyelectrolyte adsorbed amount was studied by null ellipsometry. The adsorbed amount of polyelectrolyte increased with increasing ionic strength, in agreement with the screening-enhanced adsorption regime, indicating that hydrophobic interactions with the surface play an important role in the adsorption process. At constant ionic strength, the adsorbed amount was slightly higher for polyelectrolytes with larger alkyl side chain and decreased with the hydrophobicity of aryl group. The adsorption behavior is discussed in terms of the side chain flexibility of the polymer. Characteristics of the adsorbed layer were studied by atomic force microscopy (AFM) and contact angle measurements. AFM images show the presence of aggregates and closed globular structure of polyelectrolyte onto the amino- or methyl-terminated surface, which agrees with a 3D and 2D growth mechanism, respectively. Fluorescence measurements showed that the aggregation of polyelectrolyte containing the hydrophobic naphthyl group occurs already in the solution. However, the aggregation of polyelectrolytes containing the phenyl group in its side chain is not observed in solution but is induced by the amino-terminated surface. This difference can be explained in terms of the higher flexibility of side chain bearing the phenyl group. The polyelectrolyte films showed a high chemical heterogeneity and moderate hydrophobicity.  相似文献   

17.
Protein-polymer association in solution driven by a short-range attraction has been investigated using a simple coarse-grain model solved by Monte Carlo simulations. The effect of the spatial distribution of the hydrophobic surface residues of the protein on the adsorption of weakly hydrophobic polymers at variable polymer concentration, polymer length, and polymer stiffness has been considered. Structural data on the adsorbed polymer layer and thermodynamic properties, such as the free energy, energy, and entropy, related to the protein-polymer interaction were calculated. It was found that a more heterogeneous distribution of the surface residues promotes adsorption and that this also applies for different polymer concentrations, polymer chain lengths, and polymer flexibilities. Furthermore, the polymer adsorption onto proteins with more homogeneous surface distributions displayed larger sensitivity to polymer properties such as chain length and flexibility. Finally, a simple relation between the adsorption probability and the change in the free energy was found and rationalized by a simple two-state adsorption model.  相似文献   

18.
《Colloids and Surfaces》1980,1(3-4):269-279
Exact values are obtained for the grand canonical partition function of model chains absorbed at a surface. On a six-choice simple cubic lattice, chains are generated as function of the activity of chain bonds. The molecular weight distribution of adsorbed chains and of solution chains in equilibrium with them is obtained. It is shown that the average molecular weight of adsorbed chains is higher than that of solution chains. The difference is the more pronounced the flatter the chain is when adsorbed at the surface. When the activity of chain bond; increases the surface coverage increases, more segments occur in loops extending into the solution, and the average molecular weight of solution chains approaches that of adsorbed chains. The segment density in loops as function of distance from the surface is shown to be exponential, in agreement with previous results. If polymer adsorption is high and the concentration in solution is small, the number of segments in tails is amall. The dimensions of the adsorbed polymer chain are smaller than those in solution of the same molecular weight. It is suggested that if polymer adsorption during polycondensation reactions with bond interchanges is measured, the bothersome tirne effects, invariably observed, might be eliminated. In this manner a valid comparison between theoretical and experimental results might become feasible.  相似文献   

19.
Monte Carlo simulations are reported to study the structure of polymers adsorbed from solution onto strongly attractive, perfectly smooth substrates. Six systems spanning a range of molecular weight distributions are investigated with a coarse-grained united atom model for freely rotating chains. By employing a global replica exchange algorithm and topology altering Monte Carlo moves, a range of monomer-surface attraction from weak (0.27kT) to strong (4kT) is simultaneously explored. Thus for the first time ever, equilibrium polymer adsorption on highly attractive surfaces is studied, with all adsorbed molecules displaying similar properties and statistics. The architecture of the adsorbed layers, including density profiles, bond orientation order parameters, radii of gyration, and distribution of the adsorbed chain fractions, is shown to be highly dependent on the polydispersity of the polymer phase. The homology of polymer chains, and the ergodicity of states explored by the molecules is in contrast to the metastable, kinetically constrained paradigm of irreversible adsorption. The structure of more monodisperse systems is qualitatively similar to experimental results and theoretical predictions, but result from very different chain conformations and statistics. The polydispersity-dependent behavior is explained in the context of the competition between polymers to make contact with the surface.  相似文献   

20.
This research was directed at understanding cationic surfactant adsorption phenomena on wet-ground natural quartz, mainly with dodecylpyridinium chloride as the model surfactant. How these surfactant ions adsorb at the interface was delineated through measurements of adsorption isotherms, zeta potentials, suspension stability, contact angles, induction times, and flotation response. Hydrocarbon chain association of adsorbed surfactant ions (or self-association) leads to four distinct adsorption regions as the concentration of surfactant is increased in solution. The same four regions manifest themselves in the behavior of all of the interfacial processes studied. At low concentrations, adsorption is controlled primarily by electrostatic interactions, but when the adsorbed surfactant ions begin to associate into hemimicelles at the surface, hydrophobic chain interactions control the adsorption process. The results of experiments with alkylpyridinium chlorides of 12, 14 and 16 carbon atoms can be normalized in terms of their CMCs, which clearly show that surface aggregation phenomena are driven by the same hydrophobic interactions that lead to micelle formation in bulk solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号