首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expansion of d-orbitals as a result of metal-ligand bond covalence, the so-called nephelauxetic effect, is a well-established concept of coordination chemistry, yet its importance for the design of new photoactive complexes based on first-row transition metals is only beginning to be recognized. Until recently, much focus has been on optimizing the ligand field strength, coordination geometries, and molecular rigidity, but now it becomes evident that the nephelauxetic effect can be a game changer regarding the photophysical properties of 3d metal complexes in solution at room temperature. In CrIII and MnIV complexes with the d3 valence electron configuration, the nephelauxetic effect was exploited to shift the well-known ruby-like red luminescence to the near-infrared spectral region. In FeII and CoIII complexes with the low-spin d6 electron configuration, charge-transfer excited states were stabilized with respect to detrimental metal-centered excited states, to improve their properties and to enhance their application potential. In isoelectronic (3d6) isocyanide complexes of Cr0 and MnI, the nephelauxetic effect is likely at play as well, enabling luminescence and other favorable photoreactivity. This minireview illustrates the broad applicability of the nephelauxetic effect in tailoring the photophysical and photochemical properties of new coordination compounds made from abundant first-row transition metals.  相似文献   

2.
It has recently been proposed that disulfide/thiolate interconversion supported by transition‐metal ions is involved in several relevant biological processes. In this context, the present contribution represents a unique investigation of the effect of the coordinated metal (M) on the Mn+?disulfide/M(n+1)+?thiolate switch properties. Like its isostructural CoII‐based parent compound, CoII 2 SS (Angew. Chem. Int. Ed.­ 2014 , 53, 5318), the new dinuclear disulfide‐bridged MnII complex MnII 2 SS can undergo an MII?disulfide/MIII?thiolate interconversion, which leads to the first disulfide/thiolate switch based on Mn. The coordination of iodide to the metal ion stabilizes the oxidized form, as the disulfide is reduced to the thiolate. The reverse process, which involves the reduction of MIII to MII with the concomitant oxidation of the thiolates, requires the release of iodide. The MnII 2 SS complex slowly reacts with Bu4NI in CH2Cl2 to afford the mononuclear MnIII?thiolate complex MnIIII . The process is much slower (ca. 16 h) and much less efficient (ca. 30 % yield) with respect to the instantaneous and quantitative conversion of CoII 2 SS into CoIIII under similar conditions. This distinctive behavior can be rationalized by considering the different electrochemical properties of the involved Co and Mn complexes and the DFT‐calculated driving force of the disulfide/thiolate conversion. For both Mn and Co systems, MII?disulfide/MIII?thiolate interconversion is reversible. However, when the iodide is removed with Ag+, the MII 2 SS complexes are regenerated, albeit much slower for Mn than for Co systems.  相似文献   

3.
Summary.  The optical absorption, photoluminescence, and photoconductivity spectra of some compounds of the formulas [R(CH2) n NH3] x M y X z , [R(CH2) n NH(CH3)2] x M y X z , [R(CH2) n S(CH3)2] x M y X z , [R(CH2) n SC(NH2)2] x M y X z , and [R(CH2) n SeC(NH2)2] x M y X z (R = organic residue; M = Bi(III), Pb(II), Sn(II), Cu(I), Ag(I) etc; X = I, Br, Cl; n, x, y, z = 0, 1, 2, 3, …) are briefly reviewed, and some new results are reported. The position, intensity, and shape of the excitonic bands depend on the dimensionality and size of the inorganic network as well as on the nature of the M, X, R, and onium moieties. Received June 23, 2000. Accepted August 1, 2000  相似文献   

4.
The linear extension of the rigid, C3v‐symmetrical carbon framework of tribenzotriquinacene (TBTQ) along its three wings is reported. The key step of the extension procedure consists of a Diels–Alder reaction of three ortho‐quinodimethane units generated in situ at the triquinacene core. The use of 1,4‐naphthoquinone provides a facile and particularly efficient access to tris(tetraceno)‐annellated triquinacenes. The steady‐state photophysical properties of these new oligotetracenes bearing three mutually orthogonal chomophores are determined and analyzed by DFT calculations.  相似文献   

5.
A series of novel AIE‐active (aggregation‐induced emission) molecules, named SAF‐2‐TriPE, SAF‐3‐TriPE, and SAF‐4‐TriPE, were designed and synthesized through facile reaction procedures. We found that incorporation of the spiro‐acridine‐fluorene (SAF) group, which is famous for its excellent hole‐transporting ability and rigid structure, at different substitution positions on the phenyl ring affected the conjugation lengths of these compounds. Consequently, we have obtained molecules with different emission colors and properties without sacrificing good EL (electroluminescence) characteristics. Accordingly, a device that was based on compound SAF‐2‐TriPE displayed superior EL characteristics: it emitted green light with ηc, max=10.5 cd A?1 and ηext, max=4.22 %, whereas a device that was based on compound SAF‐3‐TriPE emitted blue‐green light with ηc, max=3.9 cd A?1 and ηext, max= 1.71 %. These compounds also displayed different AIE performances: when the fraction of water in the THF solutions of these compounds was increased, we observed a significant improvement in the ΦF of compounds SAF‐2‐TriPE and SAF‐3‐TriPE; in contrast, compound SAF‐4‐TriPE showed an abnormal phenomenon, in that it emitted a strong fluorescence in both pure THF solution and in the aggregated state without a significant change in ΦF. Overall, this systematic study confirmed a relationship between the regioisomerism of the luminophore structure and its AIE activity and the resulting electroluminescent performance in non‐doped devices.  相似文献   

6.
We successfully synthesized eight meso-aryl BODIPYs with 2,6-diethyl- or 1,2,6,7-tetraethyl substituents and characterized their photophysical properties. The steric hindrance resulting from the phenolic group in the meso-aryl moiety and the ethyl groups on the BODIPY core affected the synthesis of dipyrromethanes as an intermediate as well as the UV–Vis absorption and fluorescence emission of the BODIPYs due to the constrained rotation of the aryl ring. The potential use of the meso-hydroxyphenyl BODIPY as a pH sensor was also shown by the pH-dependent fluorescence emissions.  相似文献   

7.
The electronic and molecular structures of 9,10‐diamino‐substituted anthracenes with different N‐substituents have been re‐examined. In particular, different N‐substituents influence both the electronic and molecular structures of the oxidized species of 9,10‐diaminoanthracenes. The anthrylene moiety of 9,10‐bis(N,N‐di(p‐anisyl)amino)anthracene retains its planarity during the course of two successive one‐electron oxidations, whereas 9,10‐bis(N,N‐dimethylamino)anthracene and 9,10‐bis(Np‐anisyl‐N‐methylamino)anthracene undergo a substantial structural change to a butterfly‐like structure through a two‐electron oxidation process. The structural changes observed for the oxidized states are ascribed to significant differences in the frontier molecular orbitals of the above‐mentioned three kinds of 9,10‐diaminoanthracenes due to different extents of mixing between the amine‐localized and anthrylene‐localized orbitals.  相似文献   

8.
Based on simple model calculations, the expected magnitude of the field‐induced shift observable in electroabsorption is estimated for three alternative assignments proposed in the literature for the lowest singlet excitation of the pentacene crystal (pure Frenkel exciton, pure charge‐transfer exciton, or a mixture of both). The results are compared with the corresponding experimental value, which is also known from the literature. The latter turns out to be compatible only with the mixed parentage of the pertinent state, which contains the charge‐transfer contribution in the range from 25 to 70 %. The conclusion is discussed in the context of the present controversies concerning the existing experimental and theoretical evidence on this subject.  相似文献   

9.
The first example of the control of porphyrinoid chromophore symmetry based on the positional isomerism of peripheral substituents has been achieved by preparing tetraazaporphyrins (TAPs) with C4h, D2h, C2v, and Cs symmetry due to the relative arrangement of peripheral tert‐butylamino and cyano groups as push and pull substituents, respectively. The four structural isomers were successfully isolated and characterized by 1H NMR spectroscopy and X‐ray crystallography. The band morphology in the Q‐band region varies depending on the molecular symmetry due to the significant perturbation introduced into the chromophore by the push and pull substituents. The C4h and C2v isomers exhibit a single Q band, whereas the Q bands of the D2h and Cs isomers show a marked splitting. The magnetic circular dichroism spectra indicate that the push–pull TAPs retain the properties of the 16‐membered 18π‐electron perimeter generally observed for porphyrinoids. Theoretical calculations have demonstrated that the perturbation introduced by the substituents lowers the D4h symmetry of the parent TAP π‐conjugated system, and this results in significant spectral changes. A novel approach to the fine‐tuning of the spectral properties of porphyrinoids based on changes in the chromophore symmetry is described.  相似文献   

10.
The conditions for the photogeneration of NO linkage isomers at room temperature are studied. By pulsed laser irradiation in the blue spectral range, the long-lived Ru−ON isomer can be generated at room temperature, which is crucial for potential applications, such as holography and data storage. By using static and time-resolved spectroscopy (UV/Vis and IR), we give evidence that the liftime of the Ru−(η2-(NO)) isomer is a decisive parameter for the formation of the Ru−ON isomer at high temperature owing to a two-step isomerization mechanism Ru−NO→Ru−(η2-(NO))→Ru−ON. Furthermore, we report the low-temperature structures for each isomer, which were revealed by photocrystallography.  相似文献   

11.
Shewanella is an electrogenic microbe that has significant content of c type cytochromes (ca. 0.5 mM ). This feature allows the optical absorption spectra of the cell‐membrane‐associated proteins to be monitored in vivo in the course of extracellular respiratory electron‐transfer reactions. The results show significant differences to those obtained in vitro with purified proteins.

  相似文献   


12.
Four new thioantimonate(III) compounds with the general formula [TM(tren)]Sb4S7, TM = Mn 1 , Fe 2 , Co 3 and Zn 4 , were synthesized under solvothermal conditions by reacting elemental TM, Sb and S in an aqueous solution of tren (tren = tris(2‐aminoethyl)amine). All compounds crystallize in the monoclinic space group P21/n with four formula units in the unit cell. Single crystal X‐ray analyses of 1 [a = 8.008(2), b = 10.626(2), c = 25.991(5) Å, β = 90.71(3)°, V = 2211.4(8) Å3], 2 [a = 8.0030(2), b = 10.5619(2), c = 25.955(5) Å, β = 90.809(3)°, V = 2193.69(8) Å3], 3 [a = 7.962(2), b = 10.541(2), c = 25.897(5) Å, β = 90.90(3)°, V = 2173.0(8) Å3] and 4 [a = 7.978(2), b = 10.625(2), c = 25.901(5) Å, β = 90.75(3)°, V = 2195.2(8) Å3] reveal that the compounds are isostructural. The [Sb4S7]2‐ anions are composed of three SbS3 trigonal pyramids and one SbS4 unit as primary building units (PBU). The PBUs share common edges and corners to form semicubes (Sb3S4) which may be regarded as secondary building units (SBU). The SBUs and SbS3 pyramids are joined in an alternating fashion yielding the equation/tex2gif-stack-1.gif[Sb4S7] anionic chain which is directed along [100]. Weaker Sb‐S bonding interactions between neighbored chains lead to the formation of layers within the (001) plane which contain pockets that are occupied by the cations. The TM2+ ions are in a trigonal bipyramidal environment of four N atoms of the tren ligand and one S atom of the thioantimonate(III) anion. The optical band gaps depend on the TM2+ ion and amount to 3.11 eV for 1 , 2.04 eV for 2 , 2.45 eV for 3 , and 2.60 eV for 4 .  相似文献   

13.
The conformational energy landscape and the associated electronic structure and spectroscopic properties (UV/Vis/near‐infrared (NIR) and IR) of three formally d5/d6 mixed‐valence diruthenium complex cations, [{Ru(dppe)Cp*}2(μ‐C≡CC6H4C≡C)]+, [ 1 ]+, [trans‐{RuCl(dppe)2}2(μ‐C≡CC6H4C≡C)]+, [ 2 ]+, and the Creutz–Taube ion, [{Ru(NH3)5}2(μ‐pz)]5+, [ 3 ]5+ (Cp=cyclopentadienyl; dppe=1,2‐bis(diphenylphosphino)ethane; pz=pyrazine), have been studied using a nonstandard hybrid density functional BLYP35 with 35 % exact exchange and continuum solvent models. For the closely related monocations [ 1 ]+ and [ 2 ]+, the calculations indicated that the lowest‐energy conformers exhibited delocalized electronic structures (or class III mixed‐valence character). However, these minima alone explained neither the presence of shoulder(s) in the NIR absorption envelope nor the presence of features in the observed vibrational spectra characteristic of both delocalized and valence‐trapped electronic structures. A series of computational models have been used to demonstrate that the mutual conformation of the metal fragments—and even more importantly the orientation of the bridging ligand relative to those metal centers—influences the electronic coupling sufficiently to afford valence‐trapped conformations, which are of sufficiently low energy to be thermally populated. Areas in the conformational phase space with variable degrees of symmetry breaking of structures and spin‐density distributions are shown to be responsible for the characteristic spectroscopic features of these two complexes. The Creutz–Taube ion [ 3 ]5+ also exhibits low‐lying valence‐trapped conformational areas, but the electronic transitions that characterize these conformations with valence‐localized electronic structures have low intensities and do not influence the observed spectroscopic characteristics to any notable extent.  相似文献   

14.
Three donor–acceptor dyads 13 comprising of a tetrathiafulvalene (TTF) unit linked with perylene by a simple σ-bond were synthesized and characterized. Spectroscopy and cyclic voltammetry provided an indication that intramolecular charge-transfer interactions in their ground states between TTF and perylene for dyads 13 are negligible. Compared with the compound perylene, dyads 13 exhibited large fluorescence quenching, which might be ascribed to photo-induced electron transfer interaction between TTF and perylene units in the excited state. Correspondence: Yongjia Shen, Laboratory of Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P.R. China.  相似文献   

15.
16.
Summary Spectrophotometric studies of compounds formed by several substituted antipyrineSchiff bases as electron donors with 2,3-dichloro-5,6-dicyano-benzoquinone, chloranilic acid, and chloranil as electron acceptors have given results that are consistent with 1:1 charge transfer complexes. Transition energies, oscillator strengths, and dipole moments of the complexes as well as the effect of solvent upon their stability are discussed. Also their free energies and absorption cross sections have been determined.
Charge-transfer-KomplexeSchiffscher Basen vom Antipyrintyp mit 1,4-Benzochinon-Akzeptoren
Zusammenfassung Spektrophotometrische Untersuchungen von ausSchiffschen Basen des Antipyrintyps als Elektronendonatoren und 2,3-Dichlor-5,6-dicyanobenzochinon, Chloranilsäure und Chloranil als Elektronenakzeptoren gebildeten Verbindungen zeigen die Entstehung vonCharge-transfer-Komplexen der Stöchiometrie 1:1. Neben der Berechnung von freien Energien und Absorptionsquerschnitten werden Übergangsenergien, Oszillatorstärken, Dipolmomente und der Einfluß des Lösungsmittels auf die Stabilität der Komplexe diskutiert.
  相似文献   

17.
The locations of Brønsted acid sites (BAS) in the channels of medium‐pore zeolites have a significant effect on the spontaneous ionization of para‐terphenyl (PP3) insofar as spatial constraints determine the stability of transition states and charge‐transfer complexes relevant to charge separation. The ionization rates and ionization yield values demonstrate that a strong synergy exists between the H+ polarization energy and spatial constraints imposed by the channel topology. Spectroscopic and modeling results show that PP3 incorporation, charge separation, charge transfer and charge recombination differ dramatically among zeolites with respect to channel structure (H‐FER, H‐MFI, H‐MOR) and BAS density in the channel. Compartmentalization of ejected electrons away from the initial site of ionization decreases dramatically the propensity for charge recombination. The main mode of PP3.+ decay is hole transfer to form AlO4H.+ ??? PP3 charge‐transfer complexes characterized by intense absorption in the visible range. According to the nonadiabatic electron‐transfer theory, the small reorganization energy in constrained channels explains the slow hole‐transfer rate.  相似文献   

18.
To investigate interchromophore interactions in azobenzene polymers, we have undertaken a thorough spectroscopic analysis of the azodye [(S)-3-pivaloyloxy-1-(4'-nitro-4-azobenzene)pyrrolidine] by modeling the repeating unit of poly[(S)-3-methacryloyloxy-1-(4'-nitro-4-azobenzene)pyrrolidine) and its dimeric derivative whose synthesis is presented here. The analysis of the electronic and Raman spectra of the azodye in several solvents is based on a previously proposed model for polar chromophores in solution. Electronic and CD spectra of the dimeric unit are collected and analyzed within the framework of a new model. On the basis of the information collected from the spectroscopic analysis of the solvated dye, this model accounts for interchromophore interactions in the dimer. The large CD signal measured for the dimer (amounting to about a third of the signal measured for the polymer) suggests the presence of important chiral interactions in the dimeric unit, and is modeled in terms of a right-handed relative orientation of the two chromophores.  相似文献   

19.
Summary. The benzoate 1B region exciton Cotton effects, hitherto unexplored, were analyzed for their use in stereochemical assignments in both acyclic (conformationally flexible) and cyclic molecules. It was found that a strong, allowed 1Ba transition, polarized longitudinally, dominates the 1B region (185–210nm) both in the UV and the CD spectra. The exciton Cotton effects due to this transition have the same sign (but differing magnitude) as those due to the 1La (CT) band. The other component of the nearly degenerate 1B system, i.e. 1Bb transition, polarized orthogonally to the 1Ba transition, gives a Cotton effect in the case of di- and poly(4-chlorobenzoate) chromophoric system, the sign of which is sensitive to the configuration of di- or polyol. In rigid 5-steroid skeleton 1Bb transition couplings appear responsible for strong exciton Cotton effects due to nearly parallelly oriented benzoate chromophores. Whereas 1Ba transition excitation energy appears insensitive to the nature of a substituent in 4-position of the benzoate chromophore, substitution with a donor group (methoxy, dimethylamino) brings about a red shift of the 1Bb band, although less pronounced than the red shift of the 1La (CT) band.  相似文献   

20.
We report herein a detailed study of the use of porphyrins fused to imidazolium salts as precursors of N‐heterocyclic carbene ligands 1 M . Rhodium(I) complexes 6 M – 9 M were prepared by using 1 M ligands with different metal cations in the inner core of the porphyrin (M=NiII, ZnII, MnIII, AlIII, 2H). The electronic properties of the corresponding N‐heterocyclic carbene ligands were investigated by monitoring the spectroscopic changes occurring in the cod and CO ancillary ligands of [( 1 M )Rh(cod)Cl] and [( 1 M )Rh(CO)2Cl] complexes (cod=1,5‐cyclooctadiene). Porphyrin–NHC ligands 1 M with a trivalent metal cation such as MnIII and AlIII are overall poorer electron donors than porphyrin–NHC ligands with no metal cation or incorporating a divalent metal cation such as NiII and ZnII. Imidazolium salts 3 M (M=Ni, Zn, Mn, 2H) have also been used as NHC precursors to catalyze the ring‐opening polymerization of L ‐lactide. The results clearly show that the inner metal of the porphyrin has an important effect on the reactivity of the outer carbene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号