首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symmetric fragmentation of multiply charged alkali-metal clusters consisting of several tens of atoms is studied. The energy variation during the fragmentation process is calculated using the theory ofshell corrections, in which total energy is written as a sum of the liquid-droplet and shell correction terms. It is found that the variation of the shell correction term is much larger than that of the liquid-droplet one if the parent cluster is metastable. Fragmentation into nearly-magic cluster is most favored regardless of parent size since the barrier height for fragmentation is mainly determined by the shell configuration of fragments rather than that of the parent.  相似文献   

2.
Image charge detection has been used to measure the charge and velocity of individual electrosprayed water droplets. With a positive bias on the electrospray needle the majority of the droplets are, as expected, positively charged. However, a small fraction, surprisingly, carry a negative charge. Plausible explanations for the presence of the negatively charged droplets are discussed. In particular, we consider the possibility of the negatively charged droplets resulting from a bipolar fission process where the incorporation of a small negatively charged droplet between two larger positively charged progeny lowers the energy barrier for symmetric fission.  相似文献   

3.
The behavior of the analyte molecules inside the neutral core of the charged droplet produced by the electrospray (ES) process is not unambiguously known to date. We have identified interesting molecular transformations of two suitably chosen analytes inside the ES droplets. The highly stable Ni(II) complex of 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (1) that consists of a positive charge at the metal center, and the allyl pendant armed tertiary amine containing macrocycle 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetraallyl-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (M 4p ) have been studied by ESI mass spectrometry as the model analytes. We have shown that these two molecules are not representatively transferred from solution to gas phase by ESI; rather, they undergo fragmentation inside the charged droplets. The results indicated that a charged analyte such as 1 was possibly unstable inside the neutral core of the ES droplet and undergoes fragmentation due to the Coulombic repulsion imparted by the surface protons. Brownian motion of the neutral analyte such as M 4p inside the droplet, on the other hand, may lead to proton attachment on interaction with the charged surface causing destabilization that leads to fragmentation of M 4p and release of resonance stabilized allyl cations from the core of the droplet. Detailed solvent dependence and collision-induced dissociation (CID) studies provided compelling evidences that the fragmentation of the analytes indeed occurs inside the charged ES droplets. A viable model of molecular transformations inside the ES droplet was proposed based on these results to rationalize the behavior of the analyte molecules inside the charged ES droplets.  相似文献   

4.
We calculate potential energies for charged and neutral jellium clusters which fragment in two pieces, in the framework of the liquid drop model plus Strutinsky shell corrections obtained from the two-centre harmonic oscillator. We consider the symmetric fragmentation of Na 4 + 2 + , Na 1 + 8 + , and Na38. Good agreement is found with results obtained by self-consistent methods, which are much more involved.  相似文献   

5.
We recently reported that strong electric fields may be employed to directly extract positive and negative ions for mass analysis, including intact proteins, from neutral droplets. The present study investigates the dynamics of this process using switched high electric fields to enable time-resolved studies of droplet distortion, Taylor cone formation, and charged progeny droplet extraction from neutral and charged 225 microm methanol droplets. After a specific time in the field, a flashlamp is triggered to record droplet distortions using shadow photography. At a critical field strength E(c)0 corresponding to the Taylor limit, neutral droplets exhibit a prolate elongation along the field axis forming symmetric cone-jets of positive and negatively charged progeny droplets, approximately 10 microm in diameter. This process is termed field-induced droplet ionization (FIDI). Because the time scale of FIDI is related to the frequency of shape oscillations that occur below the Taylor limit, models of field-dependent oscillation become an important predictor of the time scale for progeny jet formation. Droplets with a net charge q distort into asymmetric tear shapes and emit a single charged jet of progeny at a critical field E(c)(q) that is less than E(c)0. The measured decrease in droplet stream charge indicates that total charge loss can be greater than the original charge on the droplet, resulting in oppositely charged droplets. Interestingly, above E(c)0, charged droplets sequentially emit a jet of the same polarity as the net charge followed by a jet of reverse polarity emitted in the opposite direction. For both neutral and charged droplets, increasing the electric field decreases the time to form jets and the combination of net charge and higher-than-critical fields has a compound effect in accelerating progeny formation. The implications of our results for using switched fields in FIDI-mass spectrometry for on-demand ion sampling from neutral and charged droplets are discussed.  相似文献   

6.
We have investigated symmetrical and asymmetrical fissions of positively charged silver clusters by a shell correction method. Contour plots of the total electronic energy as a function of deformation parameters have been obtained. They show complicated topographies arising from the shell correction.  相似文献   

7.
The mechanism of fragmentation processes in aqueous nanodroplets charged with ions is studied by molecular dynamics (MD) simulations. By using constant-temperature MD, the evaporation of the water is naturally taken into account and sequences of ion fragmentation events are observed. The size of the critical radius of the charged droplet just before the fragmentation and the distribution of the sizes of the fragments are estimated. Comparison of the Rayleigh critical radius for fragmentation and simulation data is within 0.23 nm. This seemingly small difference arises from a large difference in the number of water molecules that makes fragmentation an activated process as in the ion evaporation mechanism (IEM). This finding is in agreement with the predictions of Labowsky et al. [Anal. Chim. Acta 2000, 406, 105-118] for charged aqueous drops. The size of the daughter droplets is larger than the prediction of Born's theory by 0.1 to 0.15 nm. The nature and the dynamics of the intermediate states of the fragmentation process characterized by a bridge formed between the mother droplet and the evaporating ion or thorned structures where the ion sits on the tip are important for the outcome of the size-distribution of the fragments, while they are is missing in Born's theory.  相似文献   

8.
Impact desolvation of electrosprayed microdroplets (IDEM) is a new method for producing gas-phase ions of large biomolecules. Analytes are dissolved in an electrolyte solution which is electrosprayed in vacuum, producing highly charged micron and sub-micron sized droplets (microdroplets). These microdroplets are accelerated through potential differences approximately 5 - 10 kV to velocities of several km/s and allowed to impact a target surface. The energetic impacts vaporize the droplets and release desolvated gas-phase ions of the analyte molecules. Oligonucleotides (2- to 12-mer) and peptides (bradykinin, neurotensin) yield singly and doubly charged molecular ions with no detectable fragmentation. Because the extent of multiple charging is significantly less than in atmospheric pressure electrospray ionization, and the method produces ions largely free of adducts from solutions of high ionic strength, IDEM has some promise as a method for coupling to liquid chromatographic techniques and for mixture analysis. Ions are produced in vacuum at a flat equipotential surface, potentially allowing efficient ion extraction.  相似文献   

9.
Electrospray ionization mass spectrometry/mass spectrometry in the positive ion mode was used to investigate the gas‐phase chemistry of multicharged ions from solutions of porphyrins with 1,3‐dimethylimidazolium‐2‐yl (DMIM) and 1‐methylimidazol‐2‐yl (MIm) meso‐substituents. The studied compounds include two free bases and 12 complexes with transition metals (Cu(II), Zn(II), Mn(III), and Fe(III)). The observed multicharged ions are either preformed or formed during the electrospraying process by reduction or protonation and comprise closed‐shell and hypervalent mono‐radical and bi‐radical ions. The observed extensive and abundant fragmentation of the DMIM and MIm meso‐substituents is a characteristic feature of these porphyrins. Fragments with the same mass values can be lost from the meso‐substituents either as charged or neutral species and from closed‐shell and hypervalent radical ions. Reduction processes are observed for both the free bases and the metallated DMIM porphyrins and occur predominantly by formation of hypervalent radicals that fragment, at low energy collisions, by loss of methyl radicals with formation of the corresponding MIm functionalities. These findings confirm that, when using electrospray ionization, reduction is an important characteristic of cationic meso‐substituted tetrapyrrolic macrocycles, always occurring when delocalization of the formed hypervalent radicals is possible. For the Fe(III) and Mn(III) complexes, reduction of the metal centers is also observed as the predominant fragmentation of the corresponding reduced ions through losses of charged fragments testifies. The fragmentation of the closed‐shell ions formed by protonation of the MIm porphyrins mirrors the fragmentation of the closed‐shell ions of their DMIM counterparts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Total and partial ion yield spectra of chlorocarbonylsulfenyl chloride, ClC(O)SCl, are studied using tunable synchrotron radiation. Multicoincidence techniques, which include photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) time-of-flight mass spectrometry, were applied to study the fragmentation dynamics around the S 2p, Cl 2p, C 1s, and O 1s ionization edges. The search for site-specific fragmentation effects showed a definite enhancement of the Cl+ signal at the Cl 2p resonance. However, fragmentation patterns of the PEPICO spectra at the various excitation energies are essentially identical. Evidence for the occurrence of the previously reported charge separation after an ion rearrangement dissociation mechanism was found. Highly charged species were observed in the multicoincidence spectra at K shell transitions, revealing the formation of a highly charged molecular ion.  相似文献   

11.
Dispersed negatively charged silica nanoparticles segregate inside microfluidic water-in-oil (W/O) droplets that are coated with a positively charged lipid shell. We report a methodology for the quantitative analysis of this self-assembly process. By using real-time fluorescence microscopy and automated analysis of the recorded images, kinetic data are obtained that characterize the electrostatically-driven self-assembly. We demonstrate that the segregation rates can be controlled by the installment of functional moieties on the nanoparticle's surface, such as nucleic acid and protein molecules. We anticipate that our method enables the quantitative and systematic investigation of the segregation of (bio)functionalized nanoparticles in microfluidic droplets. This could lead to complex supramolecular architectures on the inner surface of micrometer-sized hollow spheres, which might be used, for example, as cell containers for applications in the life sciences.  相似文献   

12.
We report a microfluidic approach for one‐step fabrication of polyelectrolyte microcapsules in aqueous conditions. Using two immiscible aqueous polymer solutions, we generate transient water‐in‐water‐in‐water double emulsion droplets and use them as templates to fabricate polyelectrolyte microcapsules. The capsule shell is formed by the complexation of oppositely charged polyelectrolytes at the immiscible interface. We find that attractive electrostatic interactions can significantly prolong the release of charged molecules. Moreover, we demonstrate the application of these microcapsules in encapsulation and release of proteins without impairing their biological activities. Our platform should benefit a wide range of applications that require encapsulation and sustained release of molecules in aqueous environments.  相似文献   

13.
In cell membranes, the lipid compositions of the inner and outer leaflets differ. Therefore, a robust model system that enables single-channel electrical recording with asymmetric bilayers would be very useful. We and others recently developed the droplet interface bilayer (DIB), which is formed by connecting lipid monolayer-encased aqueous droplets submerged in an oil-lipid mixture. Here, we incorporate lipid vesicles of different compositions into aqueous droplets and immerse them in an oil bath to form asymmetric DIBs (a-DIBs). Both alpha-helical and beta-barrel membrane proteins insert readily into a-DIBs, and their activity can be measured by single-channel electrical recording. We show that the gating behavior of outer membrane protein G (OmpG) from Escherichia coli differs depending on the side of insertion in an asymmetric DIB with a positively charged leaflet opposing a negatively charged leaflet. The a-DIB system provides a general platform for studying the effects of bilayer leaflet composition on the behavior of ion channels and pores.  相似文献   

14.
Charged liquid droplets are typically generated by a high‐voltage power supply. Herein, a previously unreported method is used for charging liquid droplets: by transferring charge from an insulating solid surface charged by contact electrification to the droplets. Charging the solid surface by contact electrification involves bringing it into contact with another solid surface for generating static charge. Subsequently, water droplets that flow across the surface are found to be charged—thus, the charge is readily transferred from solid to liquid. The charge of the droplets can be tuned continuously from positive to negative by varying the way the solid surface is charged. The amount of charge generated is sufficient for manipulating, coalescing, and sorting the water droplets by solid surfaces charged by contact electrification. This method of generating charged droplets is general, simple, inexpensive, and does not need any additional equipment or power supply.  相似文献   

15.
The effect of polyelectrolyte addition on the properties of an oil-in-water (O/W) microemulsion of weakly charged spherical micelles is studied. The 81 A radius O/W droplets in this system can be charged by the partial substitution of the nonionic surfactant by a cationic surfactant. The effect of the addition of poly(acrylic acid) (PAA), which is a charged pH-dependent polyelectrolyte, on the interactions between charged or noncharged droplets has been investigated using SANS. We have characterized the phase behavior of this pH-smart system as a function of the microemulsion and the polyelectrolyte concentration and the number of charges per droplet at three pH values: pH = 2, 4.5, and 12. In particular, an associative phase separation due to the bridging of the droplets by the neutral PAA chains through H-bonds is observed with extremely low PAA addition at low pH. At the opposite, an addition of PAA at pH = 4.5 generates a strong repulsive contribution between neutral droplets. Electrostatic bonds between charged droplets and PAA, controlled by the number of charges per droplet, are responsible for a pH drift and then for an associative phase separation similar to that observed at low pH. Finally, at high pH, the creation of electrostatic bonds between fully charged PAA and charged droplets liberates sufficiently counterions in solution at high droplet charge density to screen the electrostatic interactions and to allow an associative phase separation.  相似文献   

16.
A microemulsion of decane droplets stabilized by a nonionic surfactant film is progressively charged by substitution of a nonionic surfactant molecule by a cationic surfactant. We check that the microemulsion droplets remain identical within the explored range of volume fraction (0.02-0.18) and of the number of charges per droplet (0-40). We probe the dynamics of these microemulsions by dynamic light scattering. Despite the similar structures of the uncharged and charged microemulsions, the dynamics are very different. In the neutral microemulsion, the fluctuations of polarization relax, as is well-known, via the collective diffusion of the droplets. In the charged microemulsions, two modes of relaxation are observed. The fast one is ascribed classically to the collective diffusion of the charged droplets coupled to the diffusion of the counterions. The slow one has, to our knowledge, not been observed previously neither in similar microemulsions nor in charged spherical colloids. We show that the slow mode is also diffusive and suggest that its possible origin is the relaxation of local charge fluctuations via the local exchange of droplets bearing different numbers of charges. The diffusion coefficient associated with this mode is then the self-diffusion coefficient of the droplets.  相似文献   

17.
Double emulsion droplets encapsulating crystalline colloidal arrays (CCAs) with a narrow size distribution were produced using an optofluidic device. The shell phase of the double emulsion was a photocurable resin that was photopolymerized downstream of the fluidic channel within 1 s after drop generation. The present optofluidic synthesis scheme was very effective for fabricating highly monodisperse spherical CCAs that were made structurally stable by in situ photopolymerization of the encapsulating shells. The shell thickness and the number of core emulsion drops could be controlled by varying the flow rates of the three coflowing streams in the dripping regime. The spherical CCAs confined in the shell exhibited distinct diffraction patterns in the visible range, in contrast to conventional film-type CCAs. As a result of their structure, the spherical CCAs exhibited photonic band gaps for normal incident light independent of the position on the spherical surface. This property was induced by heterogeneous nucleation at the smooth wall of the spherical emulsion drop during crystallization into a face-centered cubic (fcc) structure. On the other hand, the solidified shells did not permit the penetration of ionic species, enabling the CCAs to maintain their structure in a continuous aqueous phase of high ionic strength for at least 1 month. In addition, the evaporation of water molecules inside the shell was slowed considerably when the core-shell microparticles were exposed to air: It took approximately 6 h for a suspension encapsulated in a thick shell to evaporate completely, which is approximately 1000 times longer than the evaporation time for water droplets with the same volume. Finally, the spherical CCAs additionally exhibited enhanced stability against external electric fields. The spherical geometry and high dielectric constant of the suspension contributed to reducing the electric field inside the shell, thereby inhibiting the electrophoretic movement of the charged particles.  相似文献   

18.
A simple analytical formula is obtained for the diffusiophoresis of a dielectric fluid droplet in symmetric binary electrolyte solutions under Debye–Hückel approximation valid for weakly charged droplets. The chemiphoresis is found to yield negative mobilities most of the time for droplets of constant surface charge density, which implies that the droplets tend to move away from the source releasing ionic chemicals. This is undesirable in some practical applications like drug delivery with liposomes in terms of conveying the drug-carrying liposomes to the desired area in the human body releasing specific ionic chemicals utilizing the self-guiding nature of diffusiophoresis. The further involvement of the electrophoresis component, however, may change the scenario via the oriented electric field generated by the induced diffusion potential. The lesson here is that while the impact of the chemiphoresis component is determined by nature and uncontrollable, the electrophoresis component serves as an artificially adjustable factor via choosing droplets with the surface charge of appropriate sign in practical applications. The results here have potential use in practical applications such as drug delivery. The portable simple analytical formula is a powerful asset to experimental researchers and design engineers in colloid science and technology to facilitate their works.  相似文献   

19.
The fragmentation scheme of singly charged adenine molecule (H(5)C(5)N(5)(+)) has been studied via neutral fluorine impact at 3 keV. By analyzing in correlation the kinetic energy loss of the scattered projectile F(-) produced in single charge transfer process and the mass of the charged fragments, the excitation energy distribution of the parent adenine molecular ions has been determined for each of the main dissociation channels. Several fragmentation pathways unrevealed in standard mass spectra or in appearance energy measurements are investigated. Regarding the well-known hydrogen cyanide (HCN) loss sequence, we demonstrate that although the loss of a HCN is the dominant decay channel for the parent H(5)C(5)N(5)(+) (m = 135), the decay of the first daughter ion H(4)C(4)N(4)(+) (m = 108) involves not only the HNC (m = 27) loss but also the symmetric breakdown into two dimers of HCN.  相似文献   

20.
Dual-spray extractive electrospray ionization (EESI) mass spectrometry as a versatile analytical technique has attracted much interest due to its advantages over conventional electrospray ionization (ESI). The crucial difference between EESI and ESI is that in the EESI process, the analytes are introduced in nebulized form via a neutral spray and ionized by collisions with the charged droplets from an ESI source formed by spraying pure solvent. However, the mechanism of the droplet–droplet interactions in the EESI process is still not well understood. For example, it is unclear which type of droplet–droplet interaction is dominant: bounce, coalescence, disruption, or fragmentation? In this work, droplet–droplet interaction was investigated in detail based on a theoretical model. Phase Doppler anemometry (PDA) was employed to investigate the droplet behavior in the EESI plume and provide the experimental data (droplet size and velocity) necessary for theoretical analysis. Furthermore, numerical simulations were performed to clarify the influence of the sheath gas flow on the EESI process. No coalescence between the droplets in the ESI spray and the droplets in the sample spray was observed using various geometries and sample flow rates. Theoretical analysis, together with the PDA results, suggests that droplet fragmentation may be the dominant type of droplet–droplet interaction in the EESI. The interaction time between the ESI droplet and the sample droplet was estimated to be <5 μs. This work gives a clear picture of droplet–droplet interactions in the dual-spray EESI process and detailed information for the optimization of this method for future applications that require higher sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号