首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe n + and Pd n + clusters up ton=19 andn=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe n + clusters react by simply adsorbing intact NH3 molecules. Only Fe 4 + ions show dehydrogenation/adsorption to Fe4(NH) m + intermediates (m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd n + cluster ions (n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd 6 + appear totally unreactive. Towards D2, Pd 7 + ions seem inert, whereas Pd 8 + adsorb up to two molecules.  相似文献   

2.
Reactivity of positively charged cobalt cluster ions (Co n + ,n=2?22), produce by laser vaporization, with various gas samples (CH4, N2, H2, C2H4, and C2H2) were systematically investigated by using a fast-flow reactor. The reactivity of Co n + with the various gas samples is qualitatively consistent with the adsorption rate of the gas to cobalt metal surfaces. Co n + highly reacts with C2H2 as characterized by the adsorption rate to metal surfaces, and it indicates no size dependence. In contrast, the reactions of Co n + with the other gas samples indicate a similar cluster size dependence; atn=4, 5, and 10?15, Co n + highly reacts. The difference can be explained by the amount of the activation energy for chemisorption reaction. Compared with neutral cobalt clusters, the size dependence is almost similar except for Co 4 + and Co 5 + . The reactivity enhancement of Co 4 + and Co 5 + indicates that the cobalt cluster ions are presumed to have an active site for chemisorption atn=4 and 5, induced by the influence of positive charge.  相似文献   

3.
The production of H 3 + ions resulting from single collisions of mass-selected ionic hydrogen clusters, H n + (n=9, 25, 31), with helium at high velocity (1.55 times the Bohr velocity) has been studied. A strong double H 3 + ion production resulting from one incident cluster is observed. Moreover, evidence for a triple H 3 + fragment production is presented forn=25 and 31. Thus, in this energy range, the collision gives rise to multifragmentation processes. The formation of H 3 + ions takes place in the fragmentation of the multicharged cluster resulting from the collision.  相似文献   

4.
The hydrogen-bonded (N2H4) n clusters and the van der Waals (OCS) n clusters are size selected in a scattering experiment with a He beam up to the cluster sizen=6. By measuring the angular distributions of the scattered clusters the complete fragmentation pattern of electron impact ionization is obtained. For Hydrazine the two main fragment masses are the protonated species (N2H4) n?1H+ and with somewhat weaker intensities also the nominal ion mass (N2H4) n + . The largest intensity is observed for the monomer ion N2H 4 + to which clusters up ton=5 fragment. For carbonylsulfide, completely different results are obtained. Aside from the fragments of the OCS monomer and the van der Waals cluster fragments (OCS) 2 + and (OCS) 3 + signals at mass S 2 + , S 3 + and S2OCS+ are detected. This indicates a fast chemical reaction in the cluster according to: S + OCS → CO + S2 which occurs for clusters of sizen ≥ 2. Peaks at S 3 + and S2OCS+ are seen for the first time forn ≥ 5 according to a further reaction of S2 in the cluster.  相似文献   

5.
The formation of cluster ions when hydrogen molecular ions H 2 + and H 3 + are injected into a drift tube filled with helium gas at 4.4 K has been investigated. When H 2 + ions are injected, cluster ions HHe x + (x≦14) are produced. No production of H2He x + ions is observed. When H 3 + ions are injected, cluster ions HHe x + (x≦14) are produced as well as H3He x + (x≦13), and very small signals corresponding to H2He x + (3≦x≦10) are observed. Information on the stability of HHe x + and H3He x + is derived from the drift field dependence of the cluster size distributions. The cluster sizex=13 is found to be a magic number for HHe x + , and for H3He x + ,x=10 and 11.  相似文献   

6.
Some recent results about Ge p C n + ions (p=1, 2;n < 6) produced in laser microprobe mass analyser experiments (LAMMA) show very marked alternations in the emission intensities I(Ge p C n + ) as a function of then andp parities. I(Ge p C n + ) are maxima for evenn. Thus, intensity maxima occur when the total atom numberm of the aggregates is odd for GeC n + (m=n+1) and even for Ge2C n + (m=n+2). As a result, GeC n + ions seem to behave as C m + ions, whereas the behaviour of Ge2C n + ions is quite similar to that of Ge p + ions formed in SIMS or vaporization experiments on pure germanium. It is well known (correspondence rule) that the parity effect in the emissions corresponds to alternations in the ion stabilities. These results are analysed from a model built in Hückel approximation with hybridization. Forp=1, the clusters are assumed to be insp hybridization as for C m + ions, hence with linear shapes, and forp=2, they would rather be insp 2 orsp 3 hybridization as for Ge p + ions. Relative stabilities and distributions of the energy levels of the aggregates are then calculated. The relative stabilities given for Ge p C n + by this model show maxima for evenn as in experiments, and we have thus a good agreement between our calculation results and the experimental data. Moreover, we found that Ge2C n + would rather be insp 3 hybridization, that is under three dimensional shapes.  相似文献   

7.
Hydration of alkylammonium ions under nonanalytical electrospray ionization conditions has been found to yield cluster ions with more than 20 water molecules associated with the central ion. These cluster ion species are taken to be an approximation of the conditions in liquid water. Many of the alkylammonium cation mass spectra exhibit water cluster numbers that appear to be particularly favorable, i.e., “magic number clusters” (MNC). We have found MNC in hydrates of mono- and tetra-alkyl ammonium ions, NH3(C m H2m+1)+(H2O) n , m=1–8 and N(C m H2m+1) 4 + (H2O) n , m=2–8. In contrast, NH2(CH3) 2 + (H2O) n , NH(CH3) 3 + (H2O) n1 and N(CH3) 4 + (H2O) n do not exhibit any MNC. We conjecture that the structures of these magic number clusters correspond to exohedral structures in which the ion is situated on the surface of the water cage in contrast to the widely accepted caged ion structures of H3O+(H2O) n and NH 4 + (H2O) n .  相似文献   

8.
A systematic theoretic study on clusters containing edge-bridged octahedral metal units [Nb6Cl12] n (n?=?2, 3, or 4) and a large variety of ligands has been performed. The benchmark results on the [Nb6Cl 12 i ] n+ and [Nb6Cl 12 i Cl 6 a ] n (n?=?2, 3 or 4) cluster units demonstrated the reliability of GGA PBE functional in combination with ZORA TZP basis set for the Nb-containing coordination compounds. The geometrical, electronic, and vibrational properties of large variety of substituted Nb6Cl 12 i Y 6 a clusters have been provided. One- and two-dimensional structures with a [Nb6Cl 12 i (Bipyr) x Cl 6?x a ] (x?=?2 and 4) building blocks have been proposed as good and stable candidates for new coordination polydimensional materials.  相似文献   

9.
The dissociation patterns of doubly charged noble metal clusters (M) n ++ to two singly charged clusters, (M) m Emphasis>1/+ and (M) m Emphasis>2/+ have been investigated using a double focusing mass spectrometer. They are compared with the dissociation patterns from singly charged clusters. The dissociation probabilities to (M) 3 + and (M) 9 + were large and the odd-even alternations were observed in both patterns.  相似文献   

10.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

11.
Metastable decay of (N2) n + , formed in a supersonic jet and ionized by electron impact, has been analyzed forn≤50. The probability for decay of (N2) n + into (N2) n?x + , plotted versusx, exhibits pronounced oscillations. The “period” of these oscillations increases with increasing precursor sizen, but converges to an average value of approximately 4.7 beyondn=25.  相似文献   

12.
Rare gas ions Ne+, Ar+ and Kr+ are injected into a drift tube which is filled with helium gas and cooled by liquid helium. Helium cluster ions RgHe x + (Rg=Ne, Ar and Kr,x≦14) are observed as products. Information regarding the stability of RgHe x + is obtained from drift field dependence of the size distribution of the clusters, and magic numbers are determined. The magic numbers arex=11 and 13 for NeHe x + andx=12 for ArHe x + and KrHe x + . NeHe x + , Ar+ and Kr+ are proposed as the core ions for NeHe 13 + , ArHe 12 + and KrHe 12 + , respectively.  相似文献   

13.
Molecular wavefunctions have been generated by the PRDDO (Partial Retention of Diatomic Differential Overlap) method for the monocyclic aromatic rings containing six π-electrons (C4H 4 ?2 , C5H 5 ? , C6H6, C7H 7 + , and C8H 8 +2 ) and ten π-electron species (C8H 8 ?2 , C9H 9 ? , C10H10). The eigenvalue spectra of the canonical molecular orbitals are presented. Localized molecular orbitals (LMO's) generated using the Boys criterion are reported for localizations involving all occupied molecular orbitals (complete localizations) and localizations of the π orbitals only. We find evidence for σ-π separation in the complete localizations for some of these molecules even though the Boys criterion is often biased against such results. We demonstrate for C6H6 and find for the other molecules that the π-orbital localizations are indeterminate (i.e. there are an infinite number of equally satisfactory LMO structures between two limiting extremes). This result may be viewed as a corollary of Hückel's (4n+2) rule for aromaticity.  相似文献   

14.
Photoionizationlfragmentation of endohedral fullerenes was investigated by use of laser-de sorption time-offlight (LD-TOF) mass spectroscopy. The velocity distribution of the parent ion (LaC 82 + ) was found to be bimodal, as has previously been shown for laser desorbed C 60 + . The 0 fragment ions have velocity distributions corresponding predominantly to the fast parent ion distribution. The LD-TOF mass spectra taken with a relatively low laser fluence were independent of the delay time of the extraction pulse, showing only a monotonically decreasing pattern of LaC 2n + (as n decreased). However, with higher laser fluence, it was shown that the mass distributions drastically changed from the monotonically decreasing pattern to that of C 2n + and LaC 2n + with magic numbers. Based on these findings, a plausible photoionization/fragmentation mechanism is presented and discussed.  相似文献   

15.
Fission of doubly charged silver clusters is investigated by the method of shell corrections. The following fission events are considered: Ag 22 2+ → Ag n + + Ag 22 ?n + , (n=11, 10, 9, 8); Ag 21 2+ → Ag n + + Ag 21 ?n + , (n=10, 9, 8, 7); Ag 18 2+ → Ag n + + Ag 18 ?n + , (n=9, 8, 7, 6). It is found that the shell correction energy is comparable to or larger than the deformation energy of the liquid drop. Threshold energies for the fission events are calculated and compared with the experimental abundance spectra obtained by Katakuse et al. (1990). Correspondence between the calculated threshold energies with the shell corrections and the experimental abundance is very good, showing products from lower threshold fission channels yield more abundance. The threshold energies without the shell corrections are almost constant irrespective of the fission channels and cannot explain the experimental abundance. Abundance of some products are too small to be accounted for only by the threshold energies. The low abundance of those products may be explained by the presence of competing fission channels that have similar minimal energy paths. It is found in fission of Ag 18 2+ that the shell correction overwhelms the Coulomb energy and the fission channel to Ag8 + Ag 10 2+ is preferred over the fission channel to Ag 8 + + Ag 10 + .  相似文献   

16.
This work reports the principle, advantage, and limitations of analytical photoion spectroscopy which has been applied to dissociative photoionization processes for diatomic molecules such as H2, N2, CO, and NO. Characteristic features observed in the differential photoion spectra are summarized with a focus on (pre)dissociation of(i) multielectron excitation states commonly observed in the inner valence regions,(ii) shape resonances, and(iii) doubly charged parent ions. Possible origins for negative peaks in the differential spectra are discussed. This spectroscopy is applied to the reported photoion branching ratios for D2 (and H2 at high energies). The main findings are as follows: (1) The direct dissociation of theX 2Σ g + (1sσ g ) state of D 2 + , the two-electron excited state1Σ u + (2pσ u 2sσ g ) of D2, and the2Σ u + (2pσ u ) state of D 2 + appear clearly in the differential spectrum, as previously observed for H2. (2) Decay of H 2 + (D 2 + ) to H+ (D+) above 38 eV is due to the direct dissociation of highly excited states of H 2 + (D 2 + ) such as the2Σ g + (2sσ g ) and high-lying Rydberg states converging on H 2 2+ (D 2 2+ ). (3) In the ionization continuum of H 2 2+ (D 2 2+ ) peculiar dissociation pathways are observed. The differential photoion spectra for O2 derived from the reported photoion branching ratios are also presented. The (pre)dissociation of theb 4Σ g ? ,B 2Σ g ? , III2Π u ,2Σ u ? , and2,4Σ g ? states of O 2 + appears as the corresponding positive values in the spectra in accord with previous observations. Some other dissociation pathways possibly contributing to the spectra are discussed including dissociative double ionization.  相似文献   

17.
The results of a detailed study of the photodissociation of carbon cluster ions, C 3 + to C 20 + , are presented and discussed. The experiments were performed using internally cold cluster ions derived from pulsed laser evaporation of a graphite target rod in a helium buffer gas followed by supersonic expansion. The mass selected clusters were photodissociated using 248 nm and 351 nm light from an excimer laser. Photofragment branching ratios, photodissociation cross sections and data on the laser fluence dependence of photodissociation are reported. For almost all initial clusters, C n + , the dominant photodissociation pathway was observed to be loss of a C3 unit to give a C n?3 + ion. This observation is interpreted as indicating that dissociation occurs by a statistical unimolecular process rather than by direct photodissociation. The photodissociation was found to be linear with laser fluence forn>5 with 248 nm and 351 nm light; quadratic forn=5 for 248 nm and 351 nm; and linear forn=4 at 248 nm. Dissociation energies for the carbon cluster ions implied by these results are discussed. The photodissociation cross sections were found to change dramatically with cluster size and with the wavelength of the photodissociating light.  相似文献   

18.
A direct measurement of collisionally induced fission of C 60 2+ has been performed. We have measured coincidences between various charged fragments resulting from collisions between C 60 2+ and He atoms. The measurements show that C 60 2+ not only emits C2 units but also breaks up into larger, singly charged parts. In this paper, we report on coincidences between C n + (2≦n≦9) and C m + (42≦m≦48) fragment ions.  相似文献   

19.
The collision-induced dissociation of the adduct ions C60(C4H8) 2 2+ and C60(C4H8) 3 2+ formed by sequential reactions of C 60 2+ with 1-butene has been investigated by using a selected-ion flow tube (SIFT) apparatus. Experiments at 295 ± 2 K in 0.35 ± 0.02 torr of helium indicated that C 60 2+ adds at least five molecules of 1-butene in a sequential fashion with rates that decrease with the number of molecules added. Collision-induced dissociation experiments in which the downstream sampling nose cone of the SIFT was biased with respect to the flow tube indicated that the adduct ions C60(C4H8) 2 2+ and C60(C4H8) 3 2+ dissociate into C 60 ·+ and (C4H8) 2 ·+ and (C4H8) 3 ·+ , respectively. These observations provide evidence for the occurrence of charge separation in the derivatization of C60 dications and support the “ball-and-chain” mechanism first proposed by Wang et al. in 1992 for the sequential multiple addition of 1,3-butadiene to C 60 2+ and C 70 2+ .  相似文献   

20.
Complex formation in the Nb6O 19 8? -WO 4 2? -H+-H2O system with c Nb : c W = 1 : 5 and varied c Nb + W 0 = 10?2, 5 × 10?3, 2.5 × 10?3, and 10?3 mol/L) has been studied. Distribution diagrams were simulated for individual niobium(V) and tungsten(VI) isopolyanions and mixed isopolyniobotungstates for $Z = \frac{{c_{H^ + }^0 }}{{c_{Nb + W}^0 }} = 0 - 3.0$ in an NaCl background electrolyte. We have shown that isopolyniobotungstates-6 of composition H x NbW5O 19 (3 ? x)? are formed via H x Nb n W6?n O 19 (2 + n ? x)? (n=2, 3, 5) ions. The concentration formation constants and thermodynamic formation constants of isopolyniobotungstate anions (IPNTAs) in aqueous solution have been calculated. Salt Tl3NbW5O19·9H2O has been synthesized and identified by chemical analysis and IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号