首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photoelectrons from mass-identified jet-cooled tin and lead cluster anions (Sn n ? , Pb n ? ) are detached by ultraviolet laser light (=3.68 eV). The photoelectron energy spectra give the detachment energies of ground state cluster anions (electron affinities) as well as excitation energies of neutral clusters in the geometry of the anions. The energy spectra for Sn n ? are dominated by flat thresholds with ann-dependence similar to that of other group IV clusters. In contrast, for Pb n ? we find pronounced narrow lines close to threshold, generally followed by a 0.3–1.4 eV gap which indicates closed-shell behaviour of Pb n ? for nearly alln.  相似文献   

2.
Using crossed atomic, molecular cluster, and cw laser beams in conjunction with mass spectrometric ion detection, we have obtained for the first time results for electron transfer fromstate-selected Rydberg atoms to molecular clusters. We report negative ion mass spectra for (CO2) k ? (4≦k≦25) and (O2) k ? (1≦k≦13) cluster ions, resulting from collisions of Ar** (nd) Rydberg atoms (12≦n≦40) with (CO2) m and (O2) m clusters at relative velocities around 830 m/s, and, for comparison, positive ion mass spectra due to Ne(3s 3 P 2, 0) Penning ionization. For both CO 2 ? and O2-clusters, the negative and the positive ion mass spectra are very different. For (CO2) k Emphasis>/? cluster ions, the mass spectra show distinct variations with principal quantum number of the Rydberg atom, corresponding to differentn-dependences of the effective rate constant for selected cluster ions, as measured relative to the knownn-dependence for SF 6 ? formation in collisions with SF6. For (O2) k ? cluster ions, on the other hand, the mass spectra are almost independent ofn with ion intensities, which clearly reflect their thermochemical stabilities (O 4 ? as dominant species).  相似文献   

3.
The stability of multiply charged Pb n m+ -clusters (n ≤ 3;m=0, 1, 2) was studied by solving exactly for the valencep-electrons a many body Hubbard-like Hamiltonian with intra- and interatomic Coulomb interactions. Particularly we obtain that Pb 3 2+ has a metastable ground state, in which Pb 3 2+ has isosceles shape (bond lengthR=3.2 Å, bond angle θ=124°) and a positive binding energyE B =3.4 eV. The activation barrier against dissociation into Pb 2 + + Pb+ is 0.13 eV, yielding a very long lifetime. This is in agreement with recent experiments [1] in which the lifetime of Pb 3 2+ was determined to be at least 10?6 s. Comparison with self consistent Hartree-Fock calculations shows that the metastability of Pb 3 2+ is due to electronic correlations within the paramagnetic ground state.  相似文献   

4.
Cluster ions are produced by ion bombardment of thick metal targets and mass selected in a Wien filter. The unimolecular decomposition of Al n + , Cu n + , Mo n + , W n + , and Pb n + is investigated under UHV conditions. The time evolution of the decay allows a glimpse into the cluster formation/fragmentation process. Highly excited metal cluster ions decompose mainly by evaporating single neutral atoms with rates reaching 100%. The collision induced fragmentation (CIF) of stable mass selected metal cluster ions in a low pressure Ar and O2 gas target will be compared to the unimolecular decay.  相似文献   

5.
The production of H 3 + ions resulting from single collisions of mass-selected ionic hydrogen clusters, H n + (n=9, 25, 31), with helium at high velocity (1.55 times the Bohr velocity) has been studied. A strong double H 3 + ion production resulting from one incident cluster is observed. Moreover, evidence for a triple H 3 + fragment production is presented forn=25 and 31. Thus, in this energy range, the collision gives rise to multifragmentation processes. The formation of H 3 + ions takes place in the fragmentation of the multicharged cluster resulting from the collision.  相似文献   

6.
Reactivity of positively charged cobalt cluster ions (Co n + ,n=2?22), produce by laser vaporization, with various gas samples (CH4, N2, H2, C2H4, and C2H2) were systematically investigated by using a fast-flow reactor. The reactivity of Co n + with the various gas samples is qualitatively consistent with the adsorption rate of the gas to cobalt metal surfaces. Co n + highly reacts with C2H2 as characterized by the adsorption rate to metal surfaces, and it indicates no size dependence. In contrast, the reactions of Co n + with the other gas samples indicate a similar cluster size dependence; atn=4, 5, and 10?15, Co n + highly reacts. The difference can be explained by the amount of the activation energy for chemisorption reaction. Compared with neutral cobalt clusters, the size dependence is almost similar except for Co 4 + and Co 5 + . The reactivity enhancement of Co 4 + and Co 5 + indicates that the cobalt cluster ions are presumed to have an active site for chemisorption atn=4 and 5, induced by the influence of positive charge.  相似文献   

7.
Metastable decay of cluster ions has been discovered only recently. It was noted that one has to take this metastable decay into account when using mass spectrometry to probe neutral clusters, because ion abundance anomalies in mass spectra of rare gas and molecular clusters are caused by delayed metastable evaporation of monomers following ion production. Moreover, it was found that(i) the individual metastable reaction rates k depend strongly on cluster size and cluster ion production pathways and that(ii) there exists experimental evidence (k=k(t)) and a theoretical prediction that a given mass selected cluster ion generated by electron impact ionization of a nozzle expansion beam will comprise a range of metastable decay rates. In addition, it was discovered that metastable Ar cluster ions which lose two monomers in the μs time regime decay via sequential decay series Ar n + *→Ar n?1 + *→Ar n?2 + * with cluster sizes 7≤n≤10 andn=3 (similar results were obtained recently in case of N2 cluster ions). Conversely, the dominant metastable decay channel of Ar 4 + * into Ar 2 + was found to proceed predominantly via a single step fissioning process.  相似文献   

8.
Electronic properties of silicon-fluorine and germanium-fluorine cluster anions (SinF m ? n = 1–9, m = 1–3, GenF m ? ; n =1–9, m = 1–3) were investigated by photoelectron spectroscopy using a magnetic-bottle type electron spectrometer. The binary cluster anions were generated by a laser vaporization of a silicon/germanium rod in an He carrier gas mixed with a small amount of SiF4 or F2 gas. Comparison between photoelectron spectra of SinF?/GenF? and Sin /Gen (n = 4–9) gives the insight that the doped F atom can remove one electron from the corresponding Sin n ? /Ge n ? cluster without any serious rearrangement of Sin/Gen framework, because only the first peak of Si n ? /Ge n ? , corresponding singly occupied molecular orbital (SOMO), disappears and other successive spectral features are unchanged with the F atom doping  相似文献   

9.
Negative cluster ions M p C n ? (M normal element,n<10,p=1?4) produced by various experimental techniques from carbides show in their emission intensities a very strong even-odd effect according to the parity of the carbon atom numbern. This is in particular the case when M=N, F, Cl (p=1), M=H, Al, Si, S (p=1, 2) or M=B (p=1?4). The largest intensities of M p C n ? ions always take place for evenn except in the cases of NC n ? , B2C n ? and Al2C n ? , for which the maxima of emission occur for oddn. This oscillating behaviour corresponds to alternations in the stability of the clusters which are mainly due to the fact that, in Pitzer and Clementi model (linear chains in thesp hybridization within the framework of Hückel theory), the HOMO (highest occupied molecular orbital) of the clusters lies in a double degenerateπ level band: a cluster with a complete HOMO is always more stable than a cluster with a nearly empty HOMO. This result involves that the total number ofπ electrons is the main factor governing the parity of the stability alternations. Accordingly, since the knowledge of theπ electron number requires the determination of theσ electron number too, these alternations enable us to infer a very likely electronic structure of the ions.  相似文献   

10.
Negatively charged cluster ions of hydrogen chloride are formed by electron attachment to HCl clusters, which are produced in a seeded supersonic beam traversing a sustained gas discharge. Cluster ions of (HCl) n ? , withn=2, and tentatively withn=3 and 4 are observed. Cluster ions like Cl n ? , Cl n ? (HCl) m , and withAr attached to them are also seen. The relevance to radiation chemistry of HCl if briefly discussed. Atoms evaporating from the hot, thoriated tungsten filament of the glow discharge lead to clusters such as Th n ? and its oxides.  相似文献   

11.
Mass-selected antimony cluster ions Sb n + (n = 3-12) and bismuth cluster ions Bi {ntn} + (n = 3-8) are allowed to collide with the surface of highly oriented pyrolytic graphite at energies up to 350 eV. The resulting fragment ions are analysed in a time-of-flight mass spectrometer. Two main fragmentation channels can be identified. At low impact energies both Sb n + and Bi n + cluster ions lose neutral tetramer and dimer units upon collision. Above about 150 eV impact energy Sb 3 + becomes the predominant fragment ion of all investigated antimony clusters. The enhanced stability of these fragment clusters can be explained in the framework of the polyhedral skeletal electron pair theory. In contrast, Bi n + cluster scattering leads to the formation of Bi 3 + , Bi 2 + and Bi+ with nearly equal abundances, if the collision energy exceeds 75 eV. The integral scattering yield is substantially higher in this case as compared to Sb n + clusters.  相似文献   

12.
Metal (M)-sulfur cluster anions (M = Ag, Fe and Mn) have been studied using photoelectron spectroscopy (PES) with a magnetic-bottle type time-of-flight electron spectrometer. The MnS m ? cluster anions were formed in a laser vaporization cluster source. For Ag-S, the largest coordination number of Ag atoms (n max) is generally expressed as n max =2m ? 1 in each series of the number of S atoms (m). For Fe?S and Mn?S, it was found that the stable cluster ions are the ones with compositions of n=m and n=m±1. Their electron affinities were measured from the onset of the PES spectrum. For Ag?S, the EAs of Ag1Sm are small and around 1 eV, whereas those of AgnSm (n ≥ 2) become large above 2 eV. The features in the mass distribution and PES suggest that Ag2S unit is preferentially formed with increasing the number of Ag atoms. For Fe?S and Mn?S, the PES spectra of FenS m ? /MnnS m ? show a unique similarity at n ≥ m, indicating that the Fe/Mn atom addition to FenS n ? /MnnS n ? has little effect on the electronic property of FenSn/MnnSn. The PES spectra imply that the FenSn cluster is the structural framework of these clusters, as similarly as the determined structure of the FenSn cluster in nitrogenase enzyme.  相似文献   

13.
SCF and CEPA calculations are applied to study the structure of small He cluster ions, He n + ,n=2, 3, 4, 5 and some low-lying Rydberg states of He4. The effect of electron correlation upon the equilibrium structures and binding energies is discussed. He 3 + has a linear symmetric equilibrium geometry with a bond length of 2.35a 0 and a binding energyD e =0.165 eV with respect to He 2 + +He (experimentally:D 0=0.17 eV which corresponds toD e ≈0.20 eV). He 4 + is a very floppy molecular ion with several energetically very similar geometrical configurations. Our CEPA calculations yield a T-shaped form with a He 3 + centre (R e = 2.35a 0) and one inductively bound He atom (4.39a 0 from the central He atom of He 3 + ) as equilibrium structure. Its binding energy with respect to He 3 + +He is 0.031 eV. A linear symmetric configuration consisting of a He 2 + centre with a bond length of 2.10a 0 and two inductively bound He atoms (4.20a 0 from the centre of He 2 + ) is only 0.02–0.03 eV higher in energy. We expect that in larger He cluster ions structures with He 2 + and He 3 + centres andn?2 orn?3 inductively bound He atoms have nearly the same energies. In He4 a low-lying metastable Rydberg state (3 Π symmetry for linear He 4 * ,3 B 1 for the T-shaped form) exists which is slightly stronger bound with respect to He 3 * +He than the corresponding ion.  相似文献   

14.
Fe n + and Pd n + clusters up ton=19 andn=25, respectively, are produced in an external ion source by sputtering of the respective metal foils with Xe+ primary ions at 20 keV. They are transferred to the ICR cell of a home-built Fourier transform mass spectrometer, where they are thermalized to nearly room temperature and stored for several tens of seconds. During this time, their reactions with a gas leaked in at low level are studied. Thus in the presence of ammonia, most Fe n + clusters react by simply adsorbing intact NH3 molecules. Only Fe 4 + ions show dehydrogenation/adsorption to Fe4(NH) m + intermediates (m=1, 2) that in a complex scheme go on adsorbing complete NH3 units. To clarify the reaction scheme, one has to isolate each species in the ion cell, which often requires the ejection of ions very close in mass. This led to the development of a special isolation technique that avoids the use of isotopically pure metal samples. Pd n + cluster ions (n=2...9) dehydrogenate C2H4 in general to yield Pd n (C2H2)+, yet Pd 6 + appear totally unreactive. Towards D2, Pd 7 + ions seem inert, whereas Pd 8 + adsorb up to two molecules.  相似文献   

15.
The results of a detailed study of the photodissociation of carbon cluster ions, C 3 + to C 20 + , are presented and discussed. The experiments were performed using internally cold cluster ions derived from pulsed laser evaporation of a graphite target rod in a helium buffer gas followed by supersonic expansion. The mass selected clusters were photodissociated using 248 nm and 351 nm light from an excimer laser. Photofragment branching ratios, photodissociation cross sections and data on the laser fluence dependence of photodissociation are reported. For almost all initial clusters, C n + , the dominant photodissociation pathway was observed to be loss of a C3 unit to give a C n?3 + ion. This observation is interpreted as indicating that dissociation occurs by a statistical unimolecular process rather than by direct photodissociation. The photodissociation was found to be linear with laser fluence forn>5 with 248 nm and 351 nm light; quadratic forn=5 for 248 nm and 351 nm; and linear forn=4 at 248 nm. Dissociation energies for the carbon cluster ions implied by these results are discussed. The photodissociation cross sections were found to change dramatically with cluster size and with the wavelength of the photodissociating light.  相似文献   

16.
Collision-induced reactions of size-selected cluster anions, (CO2) n ? and (N2O)nO? with He and Kr atoms were studied at collision energies from 0.1 to 2.0 eV (center-of mass) by means of a tandem mass-spectrometer equipped with a pair of octapole ion guides. The dominant process was evaporation of the constituent molecules from the parent cluster ion. The absolute cross section for the evaporation was measured as functions of the size of the parent cluster ion and the collision energy. The reaction was explained by collisional excitation of the parent cluster ion followed by its unimolecular dissociation. The observed cross sections which correspond to those for the collisional excitation agree with those calculated in terms of charge-induced dipole and induced dipole-induced dipole interactions between the parent cluster ion and the target atom. The distributions of the product ions resulting from the unimolecular dissociation were reproduced by a simple calculation based on RRK theory. In the collision of (CO2) n ? , the cross sections for (CO2) 10 ? and (CO2) 14 ? were significantly small and their abundances in the product ion distributions were particularly large. These findings indicate that (CO2) 10 ? and (CO2) 14 ? are stable species. On the other hand, stable species in (N2O)nO? was found to be (N2O)5O?.  相似文献   

17.
Stoichiometric and non-stoichiometric, positive and negative oxygen cluster ions (n up to 70) have been produced in a crossed neutral beam/electron beam ion source. The abundance and stability of the ions formed have been analyzed with a double focussing sector field mass spectrometer in a series of experiments. Positive and negative ion mass spectra observed exhibit distinct abundance anomalies, however, at different cluster sizes. Abundance maxima and minima correlate with correspondingly small and large metastable fractions of (O2) n + and (O2) n ? ions, respectively. (O2) n + ions may also lose up top=(n?1) monomers by collision induced dissociation with monotonously decreasing probability with increasingp. Metastable fractions determined for (O2) n ? ions produced with appr. zero eV electrons are in general larger than those for ions produced with appr. 7 eV electrons. (O2) n ? ions are also observed to decay via autodetachment, with lifetimes increasing with increasing cluster size. Finally, here we were able to prove that an apparent loss of the monomer fragment O (and higher homologues) observed in the metastable time regime is due to ordinary metastable monomer evaporation in the acceleration region. Moreover, we will also present here some new data and interpretation concerning the electron attachment cross section function for O2 clusters.  相似文献   

18.
Fission of doubly charged silver clusters is investigated by the method of shell corrections. The following fission events are considered: Ag 22 2+ → Ag n + + Ag 22 ?n + , (n=11, 10, 9, 8); Ag 21 2+ → Ag n + + Ag 21 ?n + , (n=10, 9, 8, 7); Ag 18 2+ → Ag n + + Ag 18 ?n + , (n=9, 8, 7, 6). It is found that the shell correction energy is comparable to or larger than the deformation energy of the liquid drop. Threshold energies for the fission events are calculated and compared with the experimental abundance spectra obtained by Katakuse et al. (1990). Correspondence between the calculated threshold energies with the shell corrections and the experimental abundance is very good, showing products from lower threshold fission channels yield more abundance. The threshold energies without the shell corrections are almost constant irrespective of the fission channels and cannot explain the experimental abundance. Abundance of some products are too small to be accounted for only by the threshold energies. The low abundance of those products may be explained by the presence of competing fission channels that have similar minimal energy paths. It is found in fission of Ag 18 2+ that the shell correction overwhelms the Coulomb energy and the fission channel to Ag8 + Ag 10 2+ is preferred over the fission channel to Ag 8 + + Ag 10 + .  相似文献   

19.
The hydrogen-bonded (N2H4) n clusters and the van der Waals (OCS) n clusters are size selected in a scattering experiment with a He beam up to the cluster sizen=6. By measuring the angular distributions of the scattered clusters the complete fragmentation pattern of electron impact ionization is obtained. For Hydrazine the two main fragment masses are the protonated species (N2H4) n?1H+ and with somewhat weaker intensities also the nominal ion mass (N2H4) n + . The largest intensity is observed for the monomer ion N2H 4 + to which clusters up ton=5 fragment. For carbonylsulfide, completely different results are obtained. Aside from the fragments of the OCS monomer and the van der Waals cluster fragments (OCS) 2 + and (OCS) 3 + signals at mass S 2 + , S 3 + and S2OCS+ are detected. This indicates a fast chemical reaction in the cluster according to: S + OCS → CO + S2 which occurs for clusters of sizen ≥ 2. Peaks at S 3 + and S2OCS+ are seen for the first time forn ≥ 5 according to a further reaction of S2 in the cluster.  相似文献   

20.
Interaction in GdW10O 36 9? -H+(OH?)-H2O system ( \(C_{GdW_{10} O_{36}^{9 - } } \) = 1 × 10?3 mol/L) was studied by pH potentiometry at 25 ± 0.1°C, and a model that describes equilibrium processes in acid and alkaline regions was selected. Logarithms of concentrational and thermodynamic constants, values of Gibbs energy of monomeric ions reactions, and standard Gibbs energies of formation (ΔG f o ) of heteropoly anions H n GdW10O 36 (9?n)? and H m GdW5O 18 (3?n)? were calculated. A series-parallel scheme of ion transitions was pro-posed, ion distribution diagrams in aqueous solutions were built, the regions of preferable anion content were found, and heteropoly salts were synthesized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号