首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Molecular dynamics simulations of vapor-phase nucleation of germanium in an argon atmosphere were performed and a unexpected channel of nucleation was observed. This channel, vapor-induced cluster splitting, is important for more refractory materials since the critical nucleus size can fall below the size of a dimer. As opposed to conventional direct vapor nucleation of the dimer, which occurs by three-body collisions, cluster-splitting nucleation is a second-order reaction. The most important cluster-splitting reaction is the collision of a vapor atom and a trimer that leads to the formation of two dimers. The importance of the cluster-splitting nucleation channel relative to the direct vapor nucleation channel is observed to increase with decreasing vapor density and increasing ratio of vapor to carrier gas atoms.  相似文献   

2.
Sodium cluster ions Na+ n withn ranging up to 25 have been observed from a liquid sodium ion source by using a magnetic mass analyzer. Ion intensity as a function of cluster size showed distinct steps and local maxima atn=3, 5, 11, 13 and 19 (magic numbers), and a pronounced odd-even alternation. The features in the ion abundance curve are attributed to the relative stability of cluster ions. The observed magic numbers are only partially explained by the electronic shell model, indicating need to include a consideration of atomic structure in a cluster.  相似文献   

3.
The velocity distribution of sodium chloride clusters produced by inert gas condensation is determined by means of a mechanical chopping technique. It is found to be the same for all cluster sizes between 1 and more than 200 molecular units per cluster, ruling out the possibility of cluster mass separation by velocity filters. This is explained by an adiabatic expansion occuring during the cluster's exit from the condensation chamber into the high vacuum of the mass spectrometer.  相似文献   

4.
The initial stages of vapor condensation of Ge in the presence of a cold Ar atmosphere were studied by molecular-dynamics simulations. The state variables of interest included the densities of condensing vapor and gas, the density of clusters, and the average cluster size, while the temperatures of the vapor and the clusters were separately monitored with time. Three condensation processes were explicitly identified: nucleation, monomeric growth, and cluster aggregation. Our principal finding is that both the average cluster size and the number of clusters scale with the linear dimension of the computation cell, L, and Ln, with the scaling parameter n approximately 4, corresponding to a reaction order of nu approximately 2.33. This small value of n is explained by an unexpected nucleation path involving the formation of Ge dimers via two-body collisions.  相似文献   

5.
Interatomic potentials are calculated for the systems inert gas ion in the ground state-inert gas atom Ne+, Xe+ -Ne, Ar, Kr, Xe, Fr. The calculation is performed by the effective pseudopotential method using the new form of the polarization interaction potential obtained by calculating the most important polarization diagrams of perturbation theory in the Thomas-Fermi approximation. The quasimolecular states of these van der Waals systems are calculated to refine the available data; some data are obtained for the first time. Translated fromZhumal Strukturnoi Khimii, Vol. 39, No. 4, pp. 591–595, July–August, 1998.  相似文献   

6.
The effect of the addition of argon and other gases upon the intensities of negative ion species formed in an electron impact source has been investigated. The negative ion current generated for a series of aromatic compounds has been investigated as a function both of sample and argon pressure in the ion source of a ZAB-2F mass spectrometer. For all compounds studied, a striking enhancement of molecular negative ion current occurred on increasing either the presure of the sample or of argor. The results are consistent with thermalization of the 50 eV electrons by collisions with neutral molecules in the high pressure ion source and collisional stabilization of the negative ions initially formed. Analytical applications of the technique are discussed.  相似文献   

7.
A new liquid metal ion gun (LMIG) filled with bismuth has been fitted to a time-of-flight-secondary ion mass spectrometer (TOF-SIMS). This source provides beams of Bi(n)q+ clusters with n = 1-7 and q = 1 and 2. The appropriate clusters have much better intensities and efficiencies than the Au3+ gold clusters recently used in TOF-SIMS imaging, and allow better lateral and mass resolution. The different beams delivered by this ion source have been tested for biological imaging of rat brain sections. The results show a great improvement of the imaging capabilities in terms of accessible mass range and useful lateral resolution. Secondary ion yields Y, disappearance cross sections sigma, efficiencies E = Y/sigma , and useful lateral resolutions deltaL have been compared using the different bismuth clusters, directly onto the surface of rat brain sections and for several positive and negative secondary ions with m/z ranging from 23 up to more than 750. The efficiency and the imaging capabilities of the different primary ions are compared by taking into account the primary ion current for reasonable acquisition times. The two best primary ions are Bi3+ and Bi5(2+). The Bi3+ ion beam has a current at least five times larger than Au3+ and therefore is an excellent beam for large-area imaging. Bi5(2+) ions exhibit large secondary ions yields and a reasonable intensity making them suitable for small-area images with an excellent sensitivity and a possible useful lateral resolution <400 nm.  相似文献   

8.
A compact, field-free high pressure ion source designed to replace, with minimum disruption, the electron impact/chemical ionization ion source of a VG Analytical ZAB-2FQ hybrid BEqQ mass spectrometer is described. This ion source may be operated at temperatures from ≈40 to 250 °C and at pressures up to 4–5 torr and, thus, is capable of producing proton-bound cluster ions up to hexamers in good yields. Examples of high energy collision-induced dissociation, low energy collision-induced dissociation, and neutralization-reionization studies of proton-bound cluster ions produced in this source are presented.  相似文献   

9.
Metastable decay of cluster ions has been discovered only recently. It was noted that one has to take this metastable decay into account when using mass spectrometry to probe neutral clusters, because ion abundance anomalies in mass spectra of rare gas and molecular clusters are caused by delayed metastable evaporation of monomers following ion production. Moreover, it was found that(i) the individual metastable reaction rates k depend strongly on cluster size and cluster ion production pathways and that(ii) there exists experimental evidence (k=k(t)) and a theoretical prediction that a given mass selected cluster ion generated by electron impact ionization of a nozzle expansion beam will comprise a range of metastable decay rates. In addition, it was discovered that metastable Ar cluster ions which lose two monomers in the μs time regime decay via sequential decay series Ar n + *→Ar n?1 + *→Ar n?2 + * with cluster sizes 7≤n≤10 andn=3 (similar results were obtained recently in case of N2 cluster ions). Conversely, the dominant metastable decay channel of Ar 4 + * into Ar 2 + was found to proceed predominantly via a single step fissioning process.  相似文献   

10.
Cluster ions of alloys (Li-Na, Li-Mg) have been produced by a liquid metal ion source (LMIS), and analyzed by mass spectrometry. For the Li-Na system, bimetallic clusters with various compositions were formed, and dominant bimetallic species were Na2Li+, NaLi+, NaLi 2 + and NaLi 8 + with this sequence of ion intensity. These clusters are systems containing 2 or 8 valence electrons except for NaLi+. For the Li-Mg, observed bimetallic clusters were limited to only three species (MgLi+, MgLi 2 + and Mg2Li+), but unexpectedly small multiply charged homonuclear clusters, Mg 2 2+ and Mg 3 2+ , were observed.  相似文献   

11.
12.
Metal clusters are generated via laser vaporization technique, but in contrast to common designs metal wires are used as target materials. This allowed to simplify the construction of the source dramatically, because buffer gas leakage and hole drilling by the laser beam could easily be prevented. The source producesneutral clusters as well ascharged clusters (negative and positive). Time-of-flight mass spectrometry was used to characterize these three different cluster distributions for two target materials: silver and gold.  相似文献   

13.
The use of a two-dimensional charge injection device (CID) to directly image the spatial profile of impingent positively charged ions is described. By this approach, no prior conversion from an ion beam to a photon image is required. Because of the positive response of the device to plasma photons, ions that emanated from the radiofrequency glow discharge source were diverted around a photon stop and focused onto the CID. The resultant ion images were digitized via an external image processor and corrected for dark current contributions. Two-dimensional ion images and single pixel line profiles are presented.  相似文献   

14.
Small aluminum oxide cluster cations and anions, produced by laser vaporization, were investigated regarding their reactivity toward CO and N2O employing guided-ion-beam mass spectrometry. Clusters with the same stoichiometry as bulk alumina, Al2O3, exhibited atomic oxygen transfer products when reacted with CO, suggesting the formation of CO2. Anionic clusters were less reactive than cations but showed higher selectivity towards the transfer of only a single oxygen atom. Cationic clusters, in contrast, exhibited additional products corresponding to the sequential transfer of two oxygen atoms and the loss of an aluminum atom. To determine if these stoichiometric clusters could be generated from oxygen-deficient species, clusters having a stoichiometry with one less oxygen atom than bulk alumina, Al2O2, were reacted with N2O. Cationic clusters were found to be selectively oxidized to Al2O3(+), while anionic clusters added both one and two oxygen atoms forming Al2O3(-) and Al2O4(-). The oxygen-rich Al2O4(-) cluster exhibited comparable reactivity to Al2O3(-) when reacted with CO.  相似文献   

15.
For the study of ionized van der Waals cluster ions an instrument is presented, which consists of a supersonic beam cluster source coupled to an ICR spectrometer with external ion source. The neutral van der Waals clusters are generated by supersonic expansion and ionized by electron impact in the external source. The cluster ions are extracted at right angle to the neutral cluster beam and fly collision-free parallel to the magnetic field direction into the differentially pumped ICR cell. For the ion transfer, an improved lens system is presented. The cluster ion transfer lens system is capable of focusing ions with energies of a few eV perpendicular to the magnetic field direction through the differential pumping orifice. The ions are injected into the ICR cell with a trap barrier pulse, ion accumulation is possible. With this system the first ICR spectra of small cluster ions of carbon dioxide are obtained.  相似文献   

16.
Negative ions are shown to lead to solvated ions in the gas phase by reaction with esters of formic acid when two requirements are met: (1) the bond energy of the cluster is greater than 9.3 kcal/mole, and (2) the proton affinity of the negative ion is greater than 349 kcal/mole. A likely mechanism for the bimolecular process is suggested based on these results.  相似文献   

17.
18.
Gas chromatography-mass spectrometry is a well established analytical technique. However, mass spectrometers with electron ionization sources may suffer from signal drifts, hereby negatively influencing quantitative performance. To demonstrate this phenomenon for a real application, a static headspace-gas chromatography method in combination with electron ionization-quadrupole mass spectrometry was optimized for the determination of residual dichloromethane in coronary stent coatings. Validating the method, the quantitative performance of an original stainless steel ion source was compared to that of a modified ion source. Ion source modification included the application of a gold coating on the repeller and exit plate. Several validation aspects such as limit of detection, limit of quantification, linearity and precision were evaluated using both ion sources. It was found that, as expected, the stainless steel ion source suffered from signal drift. As a consequence, non-linearity and high RSD values for repeated analyses were obtained. An additional experiment was performed to check whether an internal standard compound would lead to better results. It was found that the signal drift patterns of the analyte and internal standard were different, consequently leading to high RSD values for the response factor. With the modified ion source however, a more stable signal was observed resulting in acceptable linearity and precision. Moreover, it was also found that sensitivity improved compared to the stainless steel ion source. Finally, the optimized method with the modified ion source was applied to determine residual dichloromethane in the coating of coronary stents. The solvent was detected but found to be below the limit of quantification.  相似文献   

19.
Argon cluster ions have enabled molecular depth profiling to unprecedented depths, with minimal loss of chemical information or changes in sputter rate. However, depth profiling of ultrathick films (>100 μm) using a commercial ion source oriented at 45° to the surface causes the crater bottom to shrink in size because of a combination of the crater wall angle, sputter rate differences along the trailing-edge crater wall, and undercutting on the leading-edge. The shrinking of the crater bottom has 2 immediate effects on dual-beam depth profiling: first is that the centering of the analysis beam inside the sputter crater will no longer ensure the best quality depth profile because the location of the flat crater bottom progressively shifts toward the leading-edge and second, the shifting of the crater bottom enforces a maximum thickness of the film that could be depth profiled. Experiments demonstrate that a time-of-flight secondary ion mass spectrometry instrument equipped with a 20 keV argon cluster source is limited to depth profiling a 180 μm-thick film when a 500 μm sputter raster is used and a 100 μm square crater bottom is to be left for analysis. In addition, depth profiling of a multilayer film revealed that the depth resolution degrades on trailing-edge side of the crater bottom presumably because of the redeposition of the sputtered flux from the crater wall onto the crater bottom.  相似文献   

20.
The gas-phase chemistry of AgFe+ was studied by using Fourier transform ion cyclotron resonance mass spectrometry. AgFe+ is unreactive with alkanes but reacts with cyclic and linear (C4–C8) alkenes. The primary reactions are dominated by dehydrogenation and condensation. In addition, cluster splitting is observed in the reaction of AgFe+ with benzene. Secondary reactions generally involve cluster splitting with the loss of Ag, although AgFeC5H 6 + is observed to dehydrogenate cyclopentene to yield AgFeC10H 12 + . Ion-molecule reactions, collision-induced dissociation, and photodissociation experiments were used to determine the bond energiesD°(Fe+–Ag)=53±7 kcal/mol andD°(Ag+–Fe)=46±7 kcal/mol. These values in turn were used to calculateH f (AgFe+)=296±7 kcal/mol andIP(AgFe)=6.5±0.3 eV. Related chemical and physical properties of CuFe+ are presented for comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号