首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Laser induced fluorescence of the mercury clusters Hg2 and Hg3 in the spectral range between 300 nm to 510 nm has been obtained from the dissociation of HgBr2 at 7.88 eV (157.5 nm) with an F2 molecular laser, together with fluorescence from mercury atomic transitions from highly excited states. The excitation process involves two photon absorption which dissociates the molecule at 15.76 eV total photon energy with the subsequent formation of the metallic clusters.  相似文献   

2.
Photoionization efficiency data for Hg2+ have been obtained in the region of 650–1400 A. The ionization energy of Hg2 was determined to be 9.103 ± 0.010 eV. This value allows the calculation of the dissociation energy of Hg+2 to be 1.40 ± 0.02 eV. By analyzing the differences in energy between corresponding autoionization peaks observed in the Hg+ and the Hg2+ spectra and by assuming the charge induced-dipole interaction to be the dominant interaction between Hg+(2D5/2, 3/2) and Hg at the equilibrium bond distance of Hg2, the equilibrium bond distance for Hg2 was deduced to 3.35 A.  相似文献   

3.
We report on studies of multiple ionization and fragmentation of free Hgn (n ≤ 80) clusters in the femtosecond time domain at wavelengths ranging from 255 nm to 800 nm. After excitation by single laser pulses of an intensity of 5 * 1011 W/cm2 we observe prompt formation of multiply charged Hgn clusters. The Hgn cluster size distribution observed up to n ≈ 80 shows in additon to singly charged also doubly and triply charged clusters with a surprisingly high amount of doubly charged clusters. The measured cluster size distribution is nearly independent of laser wavelengths. For higher laser intensities (2 * 1012 W/cm2) we observe multiply charged mercury atoms up to Hg5+. At 1013 W/cm2 molecules and clusters eventually disappear due to Coulomb explosion and complete Fragmentation. Only atomic ions, singly and multiply charged, with high kinetic energies are then observed.  相似文献   

4.
Photoelectron spectra for neutral mercury clusters (up to a size of 109 atoms) and liquid mercury have been recorded for several different photon energies between 7.1 eV and 10.6 eV. For both large mercury clusters (Hg x ,x≥60) and liquid mercury a strong increase of the partial photoionization cross sections near threshold with decreasing photon energy is observed. This shows clearly that the local electronic structure of large mercury clusters is very similar to the electronic structure of the metallic bulk material.  相似文献   

5.
The short-time behavior of small Hg n clusters immediately after single or double ionization is studied. We calculate self-consistently the ground state electronic energyE of ionized Hg n clusters. Upon ionization changes of the potential energy surface (PES) occur, which govern the atomic motion in the cluster. These changes depend on cluster size and charge and are determined by the interplay between the localization of the holes within an ionic core and the polarization energy of the neutral rest of the cluster. In the case of single ionization of the cluster the PES results mainly from hole delocalization. In contrast, in the case of double ionization the PES is governed almost only by strong environment polarization. We use our theory to explain the physical origin of the oscillations in the ionization cross-section of singly and doubly excited Hg n clusters observed in recent pump-probe experiments.  相似文献   

6.
The electronic properties of neutral and ionized divalent-metal clusters have been studied using a microscopic theory, which takes into account the interplay between van der Waals (vdW) and covalent bonding in the neutral clusters, and the competition between hole delocalization and polarization energy in the ionized clusters. By calculating the ground-state energies of neutral and ionized Hg n clusters, we determine the size dependence of the bond character and the ionization potentialI p (n). For neutral Hg n clusters we obtain a transition from van der Waals to covalent behaviour at the critical sizen c ~10–20 atoms. Results forI p (Hg n ) withn≤20 are in good agreement with experiments, and suggest that small Hg n + clusters can be viewed as consisting of a positive trimer core Hg 3 + surrounded byn?3 polarized neutral atoms.  相似文献   

7.
The photodissociation cross section of the weakly bound positive ion cluster O2+(H2O) has been measured at 15 discrete energies between 1.833 and 2.727 eV. Measurements indicate the cross section increases smoothly from 0.6 to 6 × 10-18 cm2 over this energy range. These cross section values are the largest reported for a positive ion cluster of atmospheric importance.  相似文献   

8.
The basic mercury(I) chromate(VI), Hg6Cr2O9 (=2Hg2CrO4·Hg2O), has been obtained under hydrothermal conditions (200 °C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K2Cr2O7. Hydrothermal treatment of microcrystalline Hg6Cr2O9 in demineralised water at 200 °C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg6Cr2O10 (=2Hg2CrO4·2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg6Cr2O9: space group P212121, Z=4, a=7.3573(12), b=8.0336(13), , 3492 structure factors, 109 parameters, R[F2>2σ(F2)]=0.0371, wR(F2 all)=0.0517; Hg6Cr2O10: space group Pca21, Z=4, a=11.4745(15), b=9.4359(12), , 3249 structure factors, 114 parameters, R[F2>2σ(F2)]=0.0398, wR(F2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg6Cr2O9 contains three different Hg22+ dumbbells, whereas Hg6Cr2O10 contains two different Hg22+ dumbbells and two Hg2+ cations. The HgI-HgI distances are characteristic and range between 2.5031(15) and 2.5286(9) Å. All Hg22+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07 Å. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66 Å. Upon heating at temperatures above 385 °C, Hg6Cr2O9 decomposes in a four-step mechanism with Cr2O3 as the end-product at temperatures above 620 °C.  相似文献   

9.
The magnetic properties of molecular metal cluster compounds resemble those of small metal particles in the metametallic size regime. Even-electron metal carbonyl clusters with 10 or more metal atoms are paramagnetic, because their frontier orbital separations of less than 1 eV lead to high-spin electronic configurations. The rhodium cluster [Rh17S2(CO)32]3? gives EPR below 200 K withg=2.04, the first example of this type of paramagnetism in an even-electron carbonyl cluster of this 4d metal. Its spectral parameters are compared with those of osmium carbonyl clusters and some significant differences highlighted. Attempts have also been made to generate radical cations from lower-nuclearity, diamagnetic molecular clusters such as Rh6(CO)16 by chemical oxidation in sulphuric acid. An EPR active species (g=2.09) believed to be [Rh6(CO)16]+ has been obtained.  相似文献   

10.
Transmission electron spectroscopy has been applied to determine the energies of resonances in HF. In addition to a sharp resonance at 10.05 eV, a resonance series exhibiting both vibrational and rotational structure is resolved in the energy range between 12 eV and 13 eV and the following molecular constants are obtained: B = 20.4 cm?1, re, = 0.93 Å, ωe 0.132 eV, ωexe = 0.006 eV and De = 0.73 eV. The resonance spectrum is analysed with reference to an electron energy loss spectrum and approximate potential energy curves are deduced. Serious discrepancies are found between the present results and the data reported by Spence and Noguchi.  相似文献   

11.
The transition from van der Waals to metallic bonding expected to occur in divalent-metal clusters (e.g., Be n , Mg n , Hg n ) as a function of cluster size is discussed. Theoretical results for several electronic properties reflecting this transition in Hg n -clusters are briefly reviewed and compared with available experiments. The limitations of the present theory particularly concerning the role of correlations and van der Waals interactions are discussed and possible improvements are suggested.  相似文献   

12.
We have used a microscopic theory to study the size dependence of the degree of localization of the valence electrons and holes in neutral an ionized rare-gas-and Hg n clusters. We discuss under which circumstances localization of the electrons and holes is favoured. We have calculated the ionization potential of Xe n , Kr n and small Hg n clusters. Good agreement with experiments is obtained. We have also determined the dependence of the ionization potential on cluster structure.  相似文献   

13.
For oxohalides of bivalent mercury [electronic configuration Hg(5d10)] containing [Hg4O5]2- tetrahedral and [Hg6O8]4- octahedral mercury groups, crystal-chemical and quantum-chemical analyses have been carried out. Density functional theory calculations indicate that the stability of these cluster groups of Hg2+ ions primarily depends on the contribution of scalar relativistic corrections and spin-orbital coupling.  相似文献   

14.
Mercury fluoride ions formed during the laser ablation of HgF2( s ) show the formation of six different cluster ion series viz., HgFn±, HgnFn–2±, HgnFn–1±, (HgF)n±, HgnFn+1±, and HgnFn+2±. Among the different ion series, the observation of high valent HgFn±(n±=3,4; n=6–8) indicates the existence of corresponding molecules which signify the remarkable participation of 5d Hg electrons in the chemical bonding with F atoms and thus make Hg a truly transition metal. Further, molecular orbital calculations show a large HOMO-LUMO energy gap (≥3 eV) and high electron affinity (≥5 eV) that indicates highly stable HgFn=3,4,6,8 with super halogen properties.  相似文献   

15.
Applicability of polyaniline (PANI) has been investigated for the preconcentration and speciation of inorganic mercury (Hg2+) and methyl mercury (CH3Hg+) in various waters (ground, lake and sea waters). Preliminary experiments (batch) with powdered PANI for the quantitative removal of both Hg2+ and CH3Hg+ showed that the retention of Hg2+ was almost independent of pH while a pH dependent trend from pH 1 to 12 was seen for CH3Hg+ with maximum retention at pH > 5. Time dependence batch studies showed that a contact time of 10 min was sufficient to reach equilibrium. The Kd values were found to be ∼8 × 104 and ∼7 × 103 for Hg2+ and CH3Hg+, respectively.Subsequently column experiments were carried out with PANI and the separation of the species was carried out by selective and sequential elution with 0.3% HCl for CH3Hg+ and 0.3% HCl-0.02% thiourea for Hg2+. This was then followed by further pre-concentration of mercury on a gold trap and its determination by CVAAS. The uptake efficiency studies showed that the PANI column was able to accumulate up to 100 mg Hg2+/g and 2.5 mg CH3Hg+/g. This method allows both preconcentration and speciation of mercury with preconcentration factors around 120 and 60 for Hg2+ and CH3Hg+, respectively. The interfering effects of various foreign substances on the retention of mercury were investigated.  相似文献   

16.
A mixture of cis and trans 1,3,5-hexatriene has been studied by electron impact at incident electron energies of 20 eV, 40 eV, 50 eV, and 70 eV, at scattering angles from 0° to 80°, and with effective energy resolutions in the range from 0.05 eV to 0.15 eV. Singlet → triplet transitions with maximum intensities at 2.61 eV and 4.11 eV are observed. The lowest energy spin-allowed excitation which can be detected is the electric dipole-allowed X1 Ag → 1 1Bu transition (in the notation appropriate for the trans isomer). No evidence has been found for a spin-allowed but symmetry-forbidden X1 Ag → 2 1Ag excitation in the vicinity of 4.4 eV transition energy. Many other spin-allowed excitations are observed in the 6–11 eV energy-loss region, and the correlation between these features and those observed in high resolution ultraviolet absorption spectra and other electron-impact spectra is discussed.  相似文献   

17.
Two new quaternary salts, [Hg3Te2][UCl6] and [Hg4As2][UCl6], have been synthesized and their structures determined by single-crystal X-ray diffraction analysis. [Hg3Te2][UCl6] is the product of a reaction involving UCl4, HgCl2, and HgTe at 873 K. The compound crystallizes in space group P21/c of the monoclinic system. [Hg4As2][UCl6] results from the reaction of U, Hg2Cl2, and As at 788 K. It crystallizes in space group Pbca of the orthorhombic system. [Hg3Te2][UCl6] has a two-dimensional framework of layers, whereas [Hg4As2][UCl6] has a three-dimensional framework of layers interconnected by Hg atoms linearly bonded to As atoms. Both framework structures contain discrete [UCl6]2− anions between the layers. [Hg3Te2][UCl6] exhibits temperature-independent paramagnetism. The optical absorption spectra of these compounds display f-f transitions.  相似文献   

18.
The rectifying junction characteristics of the organic compound pyronine-B film on a p-type Si substrate has been studied. The pyronine-B has been sublimed on the top of p-Si surface. The barrier height and ideality factor values of 0.79±0.04 and 1.13±0.06 eV for this structure have been obtained from the forward bias current-voltage (I-V) characteristics. From the low capacitance-frequency (C-f) characteristics as well as conductance-frequency (G-f) characteristics, the energy distribution of the interface states and their relaxation time have been determined in the energy range of (0.53−Ev)-(0.79−Ev) eV taking into account the forward bias I-V data. The interface state density Nss ranges from 4.93×1010 cm−2 eV−1 in (0.79−Ev) eV to 3.67×1013 cm−2 eV−1 in (0.53−Ev) eV. Furthermore, the relaxation ranges from 3.80×10−3 s in (0.53−Ev) eV to 4.21×10−4 s in (0.79−Ev) eV. It has been seen that the interface state density has an exponential rise with bias from the midgap towards the top of the valence band. The relaxation time shows a slow exponential rise with bias from the top of the valence band towards the midgap.  相似文献   

19.
LCGTO Xα model cluster calculations have been carried out to rationalize the shape of the CO 1π band of the chemisorption system CO/Ni(111) observed in angular resolved photoemission. The splitting induced by substrate interaction at twofold bridging sites (0.4 eV) is much smaller than the value deduced from experiment (1.2 eV). From calculations on (CO) n clusters lateral adsorbate interaction is estimated to cause a sizable broadening of the 1π band (1.2eV, in satisfactory agreement with experiment), but essentially no splitting (?0.1 eV). Therefore, rehybridisation due to local interaction does not seem to suffice as an explanation for the observed shape of the CO 1π band.  相似文献   

20.
The electronic structures of ScB2, TiB2, VB2, CrB2 and MnB2 have been examined by theoretical investigations. The band structures and accompanying density-of-states plots are presented. The calculated Fermi Levels are, ?5.6 eV (ScB2), ?5.7 eV (TiB2), ?6.3 eV (VB2), ?7.1 eV (CrB2), and ?7.8 eV (MnB2). The valence bands at the Fermi Edge are localised about the metal 3d orbitals. The charge distributions of the diborides are obtained from the density-of-states plots and show that the metals possess the following positive charges: Sc (+2.28), Ti (+1.99), V (+1.85), Cr (+1.52), and Mn (+1.08). The bonding within the diborides is explained with the help of solid-state calculations at a Special Point and quasi-molecular cluster calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号