首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在束 气和束 束实验条件下,详细研究了NH2(A1,090,423)自由基分别与Ar,N2,O2和NH3碰撞引起的电子态猝灭和转动态 态传能,获得了总的猝灭截面σQ (分别为≤0.17、0.26、0.30和0.48 nm2),以及相对转动态 态传能截面.利用碰撞络合物模型计算的电子猝灭截面与实验测得的截面具有基本相同的趋势,表明长程吸引势在猝灭过程中起着重要的作用.同时还发现,转动态 态传能中相对截面随着碰撞对的折合质量的减小而下降.由于NH3具有较大的偶极矩以及O2的开壳层电子结构使得猝灭截面增大,而转动态 态传能截面减小.  相似文献   

2.
Argon plasma transport properties at reduced pressures   总被引:1,自引:0,他引:1  
Argon plasma transport properties at low pressures (0.01 atm) are calculated using a modified Debve length suggested by T. Kihara et al. Electrons and heavy species are treated as two different gases, and the method of calculation is based on the simplified theory (or transport properties developed by R. S. Devoto. A generalized Saha equation is used to calculate the species composition, and experimental data by Y. Itikawa for momentum transfer cross sections are adapted for the evaluation of electron-atom collision cross sections.  相似文献   

3.
A theoretical investigation on the nonadiabatic processes of the D(+) + H(2) reaction system has been carried out by means of exact three-dimensional nonadiabatic time-dependent wave packet calculations with an extended split operator scheme (XSOS). The diabatic potential energy surface newly constructed by Kamisaka et al. (J. Chem. Phys. 2002, 116, 654) was employed in the calculations. This study provided quantum cross sections for three competing channels of the reactive charge transfer, the nonreactive charge transfer, and the reactive noncharge transfer, which contrasted markedly to many previous quantum theoretical reports on the (DH(2))(+) system restricted to the total angular momentum J = 0. These quantum theoretical cross sections derived from the ground rovibrational state of H(2) show wiggling structures and an increasing trend for both the reactive charge transfer and the nonreactive charge transfer but a decreasing trend for the reactive noncharge transfer throughout the investigated collision energy range 1.7-2.5 eV. The results also show that the channel of the reactive noncharge transfer with the largest cross section is the dominant one. A further investigation of the v-dependent behavior of the probabilities for the three channels revealed an interesting dominant trend for the reactive charge transfer and the nonreactive charge transfer at vibrational excitation v = 4 of H(2). In addition, the comparison between the centrifugal sudden (CS) and exact calculations showed the importance of the Coriolis coupling for the reactive system. The computed quantum cross sections are also compared with the experimental measurement results.  相似文献   

4.
The velocity dependence of collision broadening cross sections for both self-broadening and Xe broadening of an infrared transition in NH3 has been studied by measuring laser saturation resonance linewidths for molecules with specified velocities along the laser propagation direction. For self-broadening, the velocity dependence is in accord with inelastic collisions due to a predominantly dipole-dipole interaction potential, with smaller contributions due to shorter range forces, whereas for Xe broadening, the magnitude and velocity dependence of the collision broadening cross section is in better agreement with velocity changing collisions in the pressure range studied.  相似文献   

5.
Charge transfer collisions between C 60 3+ and C60 are studied for collision energies between 400 and 3600 eV. Single and double electron transfers are observed, both occuring under single collision conditions. Absolute charge transfer cross sections are determined as a function of collision energy. The cross section for single electron capture of approx. 300 Å2 is about two times larger than that for double electron transfer. For both processes the cross section increases slightly with increasing collision energy.  相似文献   

6.
Quantum close-coupling and coupled-states approximation scattering calculations of rotational energy transfer in CO due to collisions with H2 are presented for collision energies between 10(-6) and 15,000 cm(-1) using the H2-CO interaction potentials of Jankowski and Szalewicz [J. Chem. Phys. 123, 104301 (2005); 108, 3554 (1998)]. State-to-state cross sections and rate coefficients are reported for the quenching of CO initially in rotational levels j2 = 1-3 by collisions with both para- and ortho-H2. Comparison with the available theoretical and experimental results shows good agreement, but some discrepancies with previous calculations using the earlier potential remain. Interestingly, elastic and inelastic cross sections for the quenching of CO (j2 = 1) by para-H2 reveal significant differences at low collision energies. The differences in the well depths of the van der Waals interactions of the two potential surfaces lead to different resonance structures in the cross sections. In particular, the presence of a near-zero-energy resonance for the earlier potential which has a deeper van der Waals well yields elastic and inelastic cross sections that are about a factor of 5 larger than that for the newer potential at collision energies lower than 10(-3) cm(-1).  相似文献   

7.
This paper presents the methodology to generate beams of ions in single quantum states for bimolecular ion-molecule reaction dynamics studies using pulsed field ionization (PFI) of atoms or molecules in high-n Rydberg states produced by vacuum ultraviolet (VUV) synchrotron or laser photoexcitation. Employing the pseudocontinuum high-resolution VUV synchrotron radiation at the Advanced Light Source as the photoionization source, PFI photoions (PFI-PIs) in selected rovibrational states have been generated for ion-molecule reaction studies using a fast-ion gate to pass the PFI-PIs at a fixed delay with respect to the detection of the PFI photoelectrons (PFI-PEs). The fast ion gate provided by a novel interleaved comb wire gate lens is the key for achieving the optimal signal-to-noise ratio in state-selected ion-molecule collision studies using the VUV synchrotron based PFI-PE secondary ion coincidence (PFI-PESICO) method. The most recent development of the VUV laser PFI-PI scheme for state-selected ion-molecule collision studies is also described. Absolute integral cross sections for state-selected H2+ ions ranging from v+ = 0 to 17 in collisions with Ar, Ne, and He at controlled translational energies have been obtained by employing the VUV synchrotron based PFI-PESICO scheme. The comparison between PFI-PESICO cross sections for the H2+(HD+)+Ne and H2+(HD+)+He proton-transfer reactions and theoretical cross sections based on quasiclassical trajectory (QCT) calculations and three-dimensional quantum scattering calculations performed on the most recently available ab initio potential energy surfaces is highlighted. In both reaction systems, quantum scattering resonances enhance the integral cross sections significantly above QCT predictions at low translational and vibrational energies. At higher energies, the agreement between experiment and quasiclassical theory is very good. The profile and magnitude of the kinetic energy dependence of the absolute integral cross sections for the H2+(v+ = 0-2,N+ = 1)+He proton-transfer reaction unambiguously show that the inclusion of Coriolis coupling is important in quantum dynamics scattering calculations of ion-molecule collisions.  相似文献   

8.
Whole atom differential incoherent scattering cross sections for 59.54 keV γ-rays were measured for a number of elements in the region 29Z82 at scattering angles 90, 60, 45 and 30° employing a reflection geometry set up and a graded shielding arrangement. A 6 cm3 HPGe detector was used to detect the scattered γ-rays. All the 49 cross sections reported in this paper constitute the first experimental measurement and serve to fill the existing gaps in the cross-section data. The comparison of the measured cross sections with Klein–Nishina theory shows electron binding effects becoming significantly large at small scattering angles and for high Z elements. Incoherent scattering functions S(x, Z), corresponding to momentum transfer values 3.395, 2.4, 1.84 and 1.242 Å−1 were extracted from the measured cross sections and were compared with the theoretical predictions. The non-relativistic Hartree–Fock theory is found to be comparatively better than the Thomas–Fermi model. At small momentum transfer values and for high Z elements experimental values deviate more from Hartree–Fock theory also suggesting the need for a more rigorous second-order S-matrix calculations.  相似文献   

9.
An ion trap/ion mobility/time-of-flight mass spectrometry technique has been used to measure collision cross sections for 660 peptide ions generated by tryptic digestion of 34 common proteins. Measured cross sections have been compiled into a database that contains peptide molecular weight and sequence information. The database is used to generate average intrinsic contributions to cross section (size parameters) for different amino acid residues by solving systems of equations that relate the unknown contributions of individual residues to the sequences and cross sections of database peptides. Size parameters are combined with information about amino acid composition to calculate cross sections for database peptides. Bona fide cross section predictions (made prior to measurement) for peptides observed in tryptic digests of sperm whale myoglobin and yeast enolase are made. Eight of 10 predicted cross sections are within 2% of the experimental values and all 10 are within 3.2%. The utility of size parameters for cross section prediction is explored and discussed.  相似文献   

10.
The database, which relies on different compilations available in the literature and on other experimental values extracted from papers published from 1992 till 2010, is used, within the individual treatment of the elements from beryllium (4Be) to uranium (92U), to deduce the empirical cross sections. These experimental data can be presented in a single curve, depending on a scaling law extracted from studies in the most familiar theories of collision (PWBA and BEA). Then, a fourth order polynomial was used to fit very well the existing database of K-shell ionization cross sections by proton. This procedure generates a new set of parameters to calculate empirical cross sections. Following the present procedure, our results are compared with those obtained using the ECPSSR model where a discrepancy is observed in the low-proton energy regime.  相似文献   

11.
Angularly resolved pure rotational excitation of sodium dimers by intermediate energy electrons (150 to 300 eV) is studied using laser state selection technique, under nonresonant collision conditions. The experimental procedure, which is new to electron scattering, is described in detail. The experimental data show large rotational transitions and rotational rainbow structures. The relative cross sections agree well with the close coupling calculations and also with the spectator model predictions.  相似文献   

12.
We present an ab initio study of cold (4)He + ThO((1)Σ(+)) collisions based on an accurate potential energy surface (PES) evaluated by the coupled cluster method with single, double, and noniterative triple excitations using an extended basis set augmented by bond functions. Variational calculations of rovibrational energy levels show that the (4)He-ThO van der Waals complex has a binding energy of 10.9 cm(-1) in its ground J = 0 rotational state. The calculated energy levels are used to obtain the temperature dependence of the chemical equilibrium constant for the formation of the He-ThO complex. We find that complex formation is thermodynamically favored at temperatures below 1 K and predict the maximum abundance of free ground-state ThO(v = 0, j = 0) molecules between 2 and 3 K. The calculated cross sections for momentum transfer in elastic He + ThO collisions display a rich resonance structure below 5 cm(-1) and decline monotonically above this collision energy. The cross sections for rotational relaxation accompanied by momentum transfer decline abruptly to zero at low collision energies (<0.1 cm(-1)). We find that Stark relaxation in He + ThO collisions can be enhanced by applying an external dc electric field of less than 100 kV∕cm. Finally, we present calculations of thermally averaged diffusion cross sections for ThO in He gas, and find these to be insensitive to small variations of the PES at temperatures above 1 K.  相似文献   

13.
本文用微正则过渡态理论计算了H+O_2(n_0,j_0)→HO+O和C+H_2(n_0, j_0)→CH+H在ab initio势能面上的选态反应截面σ_(n_0,j_0); E.分析了势能面性质对反应截面的影响。计算结果表明, 在指定反应物分子的振动态n_0、转动态j_0时, 两个反应体系的反应截面随相对平动能的增加先是增加后是减小(j_0=1, n_0=0除外); 在给定相对平动能和反应物分子的转动态j_0时, 随反应物分子的振动量子数n_0的增加, 两个体系的选态反应截面均有较显著的增加, 在指定相对平动能和反应物分子的振动态n_0时, H+O_2体系的选态反应截面随j_0的变化较为复杂, 而C+H_2体系则比较简单(j_0=1除外)。对于H+O_2反应体系, 本文得到的反应截面与实验结果及准经典轨迹理论的计算结果符合得很好。  相似文献   

14.
The collision dynamics of the NO+Ne system is investigated in a molecular beam scattering experiment at a collision energy of 1055 cm(-1). Employing resonance enhanced multiphoton ionization of NO, we measured state-resolved integral and differential cross sections for the excitation to various levels of both spin-orbit manifolds. The dependence of the scattered intensity on the laser polarization is used to extract differential quadrupole moments for the collision induced angular momentum alignment. The set of cross section data is compared with results of a full quantum mechanical close coupling calculation using the set of ab initio potential energy surfaces of Alexander et al. [J. Chem. Phys. 114, 5588 (2001)]. In previous work, it was found that the positions and rotational substructures for the lowest bend-stretch vibrational states derived from these surfaces agree very well with the observed spectrum of the NO-Ne complex. For the same potential, we find that the calculated cross sections show a less satisfactory agreement with the experimental data. While the overall Jf dependence and magnitude of the integral and differential cross sections are in good agreement, noticeable discrepancies exist for the angle dependence of the differential cross sections. In general, the calculated rotational rainbow structures are shifted towards larger scattering angles indicating that the anisotropy of the potential is overestimated in the fit to the ab initio points or in the ab initio calculation itself. For most states, we find the measured alignment moments to be in excellent agreement with the results of the calculation as well as with predictions of sudden models. Significant deviations from the sudden models are observed only for those fine-structure changing collisions which are dominated by forward scattering. Results of the full quantum calculation confirm the deviations for these states.  相似文献   

15.
Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage.  相似文献   

16.
Reactions of HOD(+) with N(2) have been studied for HOD(+) in its ground state and with one quantum of excitation in each of its vibrational modes: (001)--predominately OH stretch, 0.396 eV, (010)--bend, 0.153 eV, and (100)--predominately OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 4 eV. The cross sections for both H(+) and D(+) transfer rise slowly from threshold with increasing collision energy; however, all three vibrational modes enhance reaction much more strongly than equivalent amounts of collision energy and the enhancements remain large even at high collision energy, where the vibration contributes less than 10% of the total energy. Excitation of the OH stretch enhances H(+) transfer by a factor of ~5, but the effect on D(+) transfer is only slightly larger than that from an equivalent increase in collision energy, and smaller than the effect from the much lower energy bend excitation. Similarly, OD stretch excitation strongly enhances D(+) transfer, but has essentially no effect beyond that of the additional energy on H(+) transfer. The effects of the two stretch vibrations are consistent with the expectation that stretching the bond that is broken in the reaction puts momentum in the correct coordinate to drive the system into the exit channel. From this perspective it is quite surprising that bend excitation also results in large (factor of 2) enhancements of both H(+) and D(+) transfer channels, such that its effect on the total cross section at collision energies below ~2 eV is comparable to those from the two stretch modes, even though the bend excitation energy is much smaller. For collision energies above ~2 eV, the vibrational effects become approximately proportional to the vibrational energy, though still much larger than the effects of equivalent addition of collision energy. Measurements of the product recoil velocity distributions show that reaction is direct at all collision energies, with roughly half the products in a sharp peak corresponding to stripping dynamics and half with a broad and approximately isotropic recoil velocity distribution. Despite the large effects of vibrational excitation on reactivity, the effects on recoil dynamics are small, indicating that vibrational excitation does not cause qualitative changes in the reaction mechanism or in the distribution of reactive impact parameters.  相似文献   

17.
用双色共振多光子电离光谱(REMPI)方法, 在77 K温度下对~(12)CO(A~1H)与~(13)CO(X~1∑~+)之间的碰撞传能过程进行了研究. 发现二者之间的电子能量转移极快, 并测量了其不同振动通道的速率, 得到~(12)CO(A~1П)V=1、2、3与~(13)CO(X~1∑~+)V=0之间的电子传能总截面分别为1.14±0.42、0.22±0.04、0.17±0.06 nm, 还测量了产物的∧分裂П~+和П~-的布局比, 发现П~+布居总是多于П~-. 从激基复合物生成的观点对传能机理和∧双重态布居的倾向性进行了讨论。  相似文献   

18.
We have measured L X-ray production cross sections for highly charged 156 MeV Be-like Cu ions in collisions with gaseous targets of H2, Ne, Ar, Kr and Xe. In the present collision systems, measured projectile L X-ray intensity is contributed by the excitation as well as electron transfer processes. The projectile L X-ray production cross sections are found to increase initially and then saturate with increasing target atomic number. The charge state dependence of projectile L X-ray production cross sections have been measured with Kr target.  相似文献   

19.
Conspicuous effects from a weak post collision interaction have been identified in triply differential cross sections for the ionisation of helium and hydrogen by fast electrons. A classical correction to a first Born approximation describes experimental data at smaller values of the momentum transfer.  相似文献   

20.
Relative cross sections have been obtained for the rotationally and rovibrationally inelastic scattering of S1 trans-glyoxal (CHO-CHO) in its zero point level with K' = 0 from the target gases H2, D2, and He. Emphasis is placed on using crossed molecular beam conditions that provide several choices of collision kinematics (center-of-mass collision energy, relative velocity, center-of-mass collision momentum) for each collision pair. The cross sections define the state-to-state competition among numerous rotational channels involving destination states with DeltaK' ranging from 1 to >15 for collisions with each target gas and under every kinematic condition. They also resolve a similar rotational competition among rovibrational channels where the torsion nu7' is collisionally excited. The cross section sets also allow the relative overall magnitudes of the two types of scattering to be compared. The primary motivation of these experiments concerns the rotationally inelastic scattering. Earlier studies with rare gases and fixed kinematics demonstrated that the distribution of rotational cross sections is remarkably similar from one collision pair to another. The new data show that the competition among rotational channels actually has a small but distinct dependence on kinematic conditions. Data analysis shows that the dependence is a systematic function of the available collision momentum and entirely unrelated to the identity of the target gases, including the heavier rare gases used in earlier studies. The competition among the rotational energy transfer channels and its kinematic heritage is discussed in the context of a classical hard ellipse model of linear momentum to angular momentum conversion much used with room temperature systems. When adapted to our beam conditions, the resulting account of the rotational scattering is accurate and provides insight into the collisional details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号